This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsucdom | ⊢ ( 𝐵 ∈ On → ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) ↔ 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordilem1 | ⊢ ( 𝐵 ∈ On → ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐵 ) ) | |
| 2 | domsdomtr | ⊢ ( ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) ∧ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐵 ) ) → 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) | |
| 3 | 2 | ex | ⊢ ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) ) |
| 4 | 1 3 | syl5com | ⊢ ( 𝐵 ∈ On → ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) → 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) ) |
| 5 | sdomdom | ⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≼ ( ℵ ‘ suc 𝐵 ) ) | |
| 6 | alephon | ⊢ ( ℵ ‘ suc 𝐵 ) ∈ On | |
| 7 | ondomen | ⊢ ( ( ( ℵ ‘ suc 𝐵 ) ∈ On ∧ 𝐴 ≼ ( ℵ ‘ suc 𝐵 ) ) → 𝐴 ∈ dom card ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐴 ≼ ( ℵ ‘ suc 𝐵 ) → 𝐴 ∈ dom card ) |
| 9 | cardid2 | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) | |
| 10 | 5 8 9 | 3syl | ⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
| 11 | 10 | ensymd | ⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≈ ( card ‘ 𝐴 ) ) |
| 12 | alephnbtwn2 | ⊢ ¬ ( ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ∧ ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) | |
| 13 | 12 | imnani | ⊢ ( ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) → ¬ ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
| 14 | ensdomtr | ⊢ ( ( ( card ‘ 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) → ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) | |
| 15 | 10 14 | mpancom | ⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ( card ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐵 ) ) |
| 16 | 13 15 | nsyl3 | ⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ¬ ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ) |
| 17 | cardon | ⊢ ( card ‘ 𝐴 ) ∈ On | |
| 18 | alephon | ⊢ ( ℵ ‘ 𝐵 ) ∈ On | |
| 19 | domtriord | ⊢ ( ( ( card ‘ 𝐴 ) ∈ On ∧ ( ℵ ‘ 𝐵 ) ∈ On ) → ( ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ) ) | |
| 20 | 17 18 19 | mp2an | ⊢ ( ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ≺ ( card ‘ 𝐴 ) ) |
| 21 | 16 20 | sylibr | ⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) |
| 22 | endomtr | ⊢ ( ( 𝐴 ≈ ( card ‘ 𝐴 ) ∧ ( card ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) → 𝐴 ≼ ( ℵ ‘ 𝐵 ) ) | |
| 23 | 11 21 22 | syl2anc | ⊢ ( 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) → 𝐴 ≼ ( ℵ ‘ 𝐵 ) ) |
| 24 | 4 23 | impbid1 | ⊢ ( 𝐵 ∈ On → ( 𝐴 ≼ ( ℵ ‘ 𝐵 ) ↔ 𝐴 ≺ ( ℵ ‘ suc 𝐵 ) ) ) |