This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| ackbij.g | |- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
||
| Assertion | ackbij2lem2 | |- ( A e. _om -> ( rec ( G , (/) ) ` A ) : ( R1 ` A ) -1-1-onto-> ( card ` ( R1 ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | ackbij.g | |- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
|
| 3 | fveq2 | |- ( a = (/) -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` (/) ) ) |
|
| 4 | fveq2 | |- ( a = (/) -> ( R1 ` a ) = ( R1 ` (/) ) ) |
|
| 5 | 2fveq3 | |- ( a = (/) -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` (/) ) ) ) |
|
| 6 | 3 4 5 | f1oeq123d | |- ( a = (/) -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) ) ) |
| 7 | fveq2 | |- ( a = b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` b ) ) |
|
| 8 | fveq2 | |- ( a = b -> ( R1 ` a ) = ( R1 ` b ) ) |
|
| 9 | 2fveq3 | |- ( a = b -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` b ) ) ) |
|
| 10 | 7 8 9 | f1oeq123d | |- ( a = b -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) ) |
| 11 | fveq2 | |- ( a = suc b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` suc b ) ) |
|
| 12 | fveq2 | |- ( a = suc b -> ( R1 ` a ) = ( R1 ` suc b ) ) |
|
| 13 | 2fveq3 | |- ( a = suc b -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` suc b ) ) ) |
|
| 14 | 11 12 13 | f1oeq123d | |- ( a = suc b -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) |
| 15 | fveq2 | |- ( a = A -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` A ) ) |
|
| 16 | fveq2 | |- ( a = A -> ( R1 ` a ) = ( R1 ` A ) ) |
|
| 17 | 2fveq3 | |- ( a = A -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` A ) ) ) |
|
| 18 | 15 16 17 | f1oeq123d | |- ( a = A -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` A ) : ( R1 ` A ) -1-1-onto-> ( card ` ( R1 ` A ) ) ) ) |
| 19 | f1o0 | |- (/) : (/) -1-1-onto-> (/) |
|
| 20 | 0ex | |- (/) e. _V |
|
| 21 | 20 | rdg0 | |- ( rec ( G , (/) ) ` (/) ) = (/) |
| 22 | f1oeq1 | |- ( ( rec ( G , (/) ) ` (/) ) = (/) -> ( ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) ) ) |
|
| 23 | 21 22 | ax-mp | |- ( ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) ) |
| 24 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 25 | 24 | fveq2i | |- ( card ` ( R1 ` (/) ) ) = ( card ` (/) ) |
| 26 | card0 | |- ( card ` (/) ) = (/) |
|
| 27 | 25 26 | eqtri | |- ( card ` ( R1 ` (/) ) ) = (/) |
| 28 | f1oeq23 | |- ( ( ( R1 ` (/) ) = (/) /\ ( card ` ( R1 ` (/) ) ) = (/) ) -> ( (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : (/) -1-1-onto-> (/) ) ) |
|
| 29 | 24 27 28 | mp2an | |- ( (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : (/) -1-1-onto-> (/) ) |
| 30 | 23 29 | bitri | |- ( ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : (/) -1-1-onto-> (/) ) |
| 31 | 19 30 | mpbir | |- ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) |
| 32 | 1 | ackbij1lem17 | |- F : ( ~P _om i^i Fin ) -1-1-> _om |
| 33 | 32 | a1i | |- ( b e. _om -> F : ( ~P _om i^i Fin ) -1-1-> _om ) |
| 34 | r1fin | |- ( b e. _om -> ( R1 ` b ) e. Fin ) |
|
| 35 | ficardom | |- ( ( R1 ` b ) e. Fin -> ( card ` ( R1 ` b ) ) e. _om ) |
|
| 36 | 34 35 | syl | |- ( b e. _om -> ( card ` ( R1 ` b ) ) e. _om ) |
| 37 | ackbij2lem1 | |- ( ( card ` ( R1 ` b ) ) e. _om -> ~P ( card ` ( R1 ` b ) ) C_ ( ~P _om i^i Fin ) ) |
|
| 38 | 36 37 | syl | |- ( b e. _om -> ~P ( card ` ( R1 ` b ) ) C_ ( ~P _om i^i Fin ) ) |
| 39 | f1ores | |- ( ( F : ( ~P _om i^i Fin ) -1-1-> _om /\ ~P ( card ` ( R1 ` b ) ) C_ ( ~P _om i^i Fin ) ) -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( F " ~P ( card ` ( R1 ` b ) ) ) ) |
|
| 40 | 33 38 39 | syl2anc | |- ( b e. _om -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( F " ~P ( card ` ( R1 ` b ) ) ) ) |
| 41 | 1 | ackbij1b | |- ( ( card ` ( R1 ` b ) ) e. _om -> ( F " ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( card ` ( R1 ` b ) ) ) ) |
| 42 | 36 41 | syl | |- ( b e. _om -> ( F " ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( card ` ( R1 ` b ) ) ) ) |
| 43 | ficardid | |- ( ( R1 ` b ) e. Fin -> ( card ` ( R1 ` b ) ) ~~ ( R1 ` b ) ) |
|
| 44 | pwen | |- ( ( card ` ( R1 ` b ) ) ~~ ( R1 ` b ) -> ~P ( card ` ( R1 ` b ) ) ~~ ~P ( R1 ` b ) ) |
|
| 45 | carden2b | |- ( ~P ( card ` ( R1 ` b ) ) ~~ ~P ( R1 ` b ) -> ( card ` ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( R1 ` b ) ) ) |
|
| 46 | 34 43 44 45 | 4syl | |- ( b e. _om -> ( card ` ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( R1 ` b ) ) ) |
| 47 | 42 46 | eqtrd | |- ( b e. _om -> ( F " ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( R1 ` b ) ) ) |
| 48 | 47 | f1oeq3d | |- ( b e. _om -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( F " ~P ( card ` ( R1 ` b ) ) ) <-> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) |
| 49 | 40 48 | mpbid | |- ( b e. _om -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) |
| 50 | 49 | adantr | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) |
| 51 | f1opw | |- ( ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) ) |
|
| 52 | 51 | adantl | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) ) |
| 53 | f1oco | |- ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) /\ ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) |
|
| 54 | 50 52 53 | syl2anc | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) |
| 55 | frsuc | |- ( b e. _om -> ( ( rec ( G , (/) ) |` _om ) ` suc b ) = ( G ` ( ( rec ( G , (/) ) |` _om ) ` b ) ) ) |
|
| 56 | peano2 | |- ( b e. _om -> suc b e. _om ) |
|
| 57 | 56 | fvresd | |- ( b e. _om -> ( ( rec ( G , (/) ) |` _om ) ` suc b ) = ( rec ( G , (/) ) ` suc b ) ) |
| 58 | fvres | |- ( b e. _om -> ( ( rec ( G , (/) ) |` _om ) ` b ) = ( rec ( G , (/) ) ` b ) ) |
|
| 59 | 58 | fveq2d | |- ( b e. _om -> ( G ` ( ( rec ( G , (/) ) |` _om ) ` b ) ) = ( G ` ( rec ( G , (/) ) ` b ) ) ) |
| 60 | fvex | |- ( rec ( G , (/) ) ` b ) e. _V |
|
| 61 | dmeq | |- ( x = ( rec ( G , (/) ) ` b ) -> dom x = dom ( rec ( G , (/) ) ` b ) ) |
|
| 62 | 61 | pweqd | |- ( x = ( rec ( G , (/) ) ` b ) -> ~P dom x = ~P dom ( rec ( G , (/) ) ` b ) ) |
| 63 | imaeq1 | |- ( x = ( rec ( G , (/) ) ` b ) -> ( x " y ) = ( ( rec ( G , (/) ) ` b ) " y ) ) |
|
| 64 | 63 | fveq2d | |- ( x = ( rec ( G , (/) ) ` b ) -> ( F ` ( x " y ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) |
| 65 | 62 64 | mpteq12dv | |- ( x = ( rec ( G , (/) ) ` b ) -> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
| 66 | 60 | dmex | |- dom ( rec ( G , (/) ) ` b ) e. _V |
| 67 | 66 | pwex | |- ~P dom ( rec ( G , (/) ) ` b ) e. _V |
| 68 | 67 | mptex | |- ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) e. _V |
| 69 | 65 2 68 | fvmpt | |- ( ( rec ( G , (/) ) ` b ) e. _V -> ( G ` ( rec ( G , (/) ) ` b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
| 70 | 60 69 | ax-mp | |- ( G ` ( rec ( G , (/) ) ` b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) |
| 71 | 59 70 | eqtrdi | |- ( b e. _om -> ( G ` ( ( rec ( G , (/) ) |` _om ) ` b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
| 72 | 55 57 71 | 3eqtr3d | |- ( b e. _om -> ( rec ( G , (/) ) ` suc b ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
| 73 | 72 | adantr | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
| 74 | f1odm | |- ( ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) -> dom ( rec ( G , (/) ) ` b ) = ( R1 ` b ) ) |
|
| 75 | 74 | adantl | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> dom ( rec ( G , (/) ) ` b ) = ( R1 ` b ) ) |
| 76 | 75 | pweqd | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ~P dom ( rec ( G , (/) ) ` b ) = ~P ( R1 ` b ) ) |
| 77 | 76 | mpteq1d | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
| 78 | fvex | |- ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) e. _V |
|
| 79 | eqid | |- ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) |
|
| 80 | 78 79 | fnmpti | |- ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) Fn ~P ( R1 ` b ) |
| 81 | 80 | a1i | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) Fn ~P ( R1 ` b ) ) |
| 82 | f1ofn | |- ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) Fn ~P ( R1 ` b ) ) |
|
| 83 | 54 82 | syl | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) Fn ~P ( R1 ` b ) ) |
| 84 | f1of | |- ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) --> ~P ( card ` ( R1 ` b ) ) ) |
|
| 85 | 52 84 | syl | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) --> ~P ( card ` ( R1 ` b ) ) ) |
| 86 | 85 | ffvelcdmda | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) e. ~P ( card ` ( R1 ` b ) ) ) |
| 87 | 86 | fvresd | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) = ( F ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) ) |
| 88 | imaeq2 | |- ( a = c -> ( ( rec ( G , (/) ) ` b ) " a ) = ( ( rec ( G , (/) ) ` b ) " c ) ) |
|
| 89 | eqid | |- ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) = ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) |
|
| 90 | 60 | imaex | |- ( ( rec ( G , (/) ) ` b ) " c ) e. _V |
| 91 | 88 89 90 | fvmpt | |- ( c e. ~P ( R1 ` b ) -> ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) = ( ( rec ( G , (/) ) ` b ) " c ) ) |
| 92 | 91 | adantl | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) = ( ( rec ( G , (/) ) ` b ) " c ) ) |
| 93 | 92 | fveq2d | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( F ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) |
| 94 | 87 93 | eqtrd | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) |
| 95 | fvco3 | |- ( ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) --> ~P ( card ` ( R1 ` b ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ` c ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) ) |
|
| 96 | 85 95 | sylan | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ` c ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) ) |
| 97 | imaeq2 | |- ( y = c -> ( ( rec ( G , (/) ) ` b ) " y ) = ( ( rec ( G , (/) ) ` b ) " c ) ) |
|
| 98 | 97 | fveq2d | |- ( y = c -> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) |
| 99 | fvex | |- ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) e. _V |
|
| 100 | 98 79 99 | fvmpt | |- ( c e. ~P ( R1 ` b ) -> ( ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) |
| 101 | 100 | adantl | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) |
| 102 | 94 96 101 | 3eqtr4rd | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ` c ) = ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ` c ) ) |
| 103 | 81 83 102 | eqfnfvd | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ) |
| 104 | 77 103 | eqtrd | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ) |
| 105 | 73 104 | eqtrd | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ) |
| 106 | f1oeq1 | |- ( ( rec ( G , (/) ) ` suc b ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) -> ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) |
|
| 107 | 105 106 | syl | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) |
| 108 | nnon | |- ( b e. _om -> b e. On ) |
|
| 109 | r1suc | |- ( b e. On -> ( R1 ` suc b ) = ~P ( R1 ` b ) ) |
|
| 110 | 108 109 | syl | |- ( b e. _om -> ( R1 ` suc b ) = ~P ( R1 ` b ) ) |
| 111 | 110 | fveq2d | |- ( b e. _om -> ( card ` ( R1 ` suc b ) ) = ( card ` ~P ( R1 ` b ) ) ) |
| 112 | f1oeq23 | |- ( ( ( R1 ` suc b ) = ~P ( R1 ` b ) /\ ( card ` ( R1 ` suc b ) ) = ( card ` ~P ( R1 ` b ) ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) |
|
| 113 | 110 111 112 | syl2anc | |- ( b e. _om -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) |
| 114 | 113 | adantr | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) |
| 115 | 107 114 | bitrd | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) |
| 116 | 54 115 | mpbird | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) |
| 117 | 116 | ex | |- ( b e. _om -> ( ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) |
| 118 | 6 10 14 18 31 117 | finds | |- ( A e. _om -> ( rec ( G , (/) ) ` A ) : ( R1 ` A ) -1-1-onto-> ( card ` ( R1 ` A ) ) ) |