This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rdg.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rdg0 | ⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdg.1 | ⊢ 𝐴 ∈ V | |
| 2 | rdgdmlim | ⊢ Lim dom rec ( 𝐹 , 𝐴 ) | |
| 3 | limomss | ⊢ ( Lim dom rec ( 𝐹 , 𝐴 ) → ω ⊆ dom rec ( 𝐹 , 𝐴 ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ω ⊆ dom rec ( 𝐹 , 𝐴 ) |
| 5 | peano1 | ⊢ ∅ ∈ ω | |
| 6 | 4 5 | sselii | ⊢ ∅ ∈ dom rec ( 𝐹 , 𝐴 ) |
| 7 | eqid | ⊢ ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) | |
| 8 | rdgvalg | ⊢ ( 𝑦 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ 𝑦 ) ) ) | |
| 9 | 7 8 1 | tz7.44-1 | ⊢ ( ∅ ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 ) |
| 10 | 6 9 | ax-mp | ⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 |