This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frsuc | ⊢ ( 𝐵 ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgdmlim | ⊢ Lim dom rec ( 𝐹 , 𝐴 ) | |
| 2 | limomss | ⊢ ( Lim dom rec ( 𝐹 , 𝐴 ) → ω ⊆ dom rec ( 𝐹 , 𝐴 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ω ⊆ dom rec ( 𝐹 , 𝐴 ) |
| 4 | 3 | sseli | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) ) |
| 5 | rdgsucg | ⊢ ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐵 ∈ ω → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) |
| 7 | peano2b | ⊢ ( 𝐵 ∈ ω ↔ suc 𝐵 ∈ ω ) | |
| 8 | fvres | ⊢ ( suc 𝐵 ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) ) | |
| 9 | 7 8 | sylbi | ⊢ ( 𝐵 ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) ) |
| 10 | fvres | ⊢ ( 𝐵 ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝐵 ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝐵 ∈ ω → ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) |
| 12 | 6 9 11 | 3eqtr4d | ⊢ ( 𝐵 ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) ) |