This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| ackbij.g | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) | ||
| Assertion | ackbij2lem3 | ⊢ ( 𝐴 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | ackbij.g | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) | |
| 3 | fveq2 | ⊢ ( 𝑎 = ∅ → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ ∅ ) ) | |
| 4 | suceq | ⊢ ( 𝑎 = ∅ → suc 𝑎 = suc ∅ ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝑎 = ∅ → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ) |
| 6 | fveq2 | ⊢ ( 𝑎 = ∅ → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 7 | 5 6 | reseq12d | ⊢ ( 𝑎 = ∅ → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ( 𝑅1 ‘ ∅ ) ) ) |
| 8 | 3 7 | eqeq12d | ⊢ ( 𝑎 = ∅ → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ( 𝑅1 ‘ ∅ ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) | |
| 10 | suceq | ⊢ ( 𝑎 = 𝑏 → suc 𝑎 = suc 𝑏 ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 12 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ 𝑏 ) ) | |
| 13 | 11 12 | reseq12d | ⊢ ( 𝑎 = 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) |
| 14 | 9 13 | eqeq12d | ⊢ ( 𝑎 = 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) | |
| 16 | suceq | ⊢ ( 𝑎 = suc 𝑏 → suc 𝑎 = suc suc 𝑏 ) | |
| 17 | 16 | fveq2d | ⊢ ( 𝑎 = suc 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ) |
| 18 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ suc 𝑏 ) ) | |
| 19 | 17 18 | reseq12d | ⊢ ( 𝑎 = suc 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 20 | 15 19 | eqeq12d | ⊢ ( 𝑎 = suc 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑎 = 𝐴 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) | |
| 22 | suceq | ⊢ ( 𝑎 = 𝐴 → suc 𝑎 = suc 𝐴 ) | |
| 23 | 22 | fveq2d | ⊢ ( 𝑎 = 𝐴 → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ) |
| 24 | fveq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ 𝐴 ) ) | |
| 25 | 23 24 | reseq12d | ⊢ ( 𝑎 = 𝐴 → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ↾ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 26 | 21 25 | eqeq12d | ⊢ ( 𝑎 = 𝐴 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ↾ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 27 | res0 | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ∅ ) = ∅ | |
| 28 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 29 | 28 | reseq2i | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ( 𝑅1 ‘ ∅ ) ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ∅ ) |
| 30 | 0ex | ⊢ ∅ ∈ V | |
| 31 | 30 | rdg0 | ⊢ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) = ∅ |
| 32 | 27 29 31 | 3eqtr4ri | ⊢ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ( 𝑅1 ‘ ∅ ) ) |
| 33 | peano2 | ⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) | |
| 34 | 1 2 | ackbij2lem2 | ⊢ ( suc 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 35 | 33 34 | syl | ⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 36 | f1ofn | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) | |
| 37 | 35 36 | syl | ⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) |
| 39 | peano2 | ⊢ ( suc 𝑏 ∈ ω → suc suc 𝑏 ∈ ω ) | |
| 40 | 1 2 | ackbij2lem2 | ⊢ ( suc suc 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) : ( 𝑅1 ‘ suc suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc suc 𝑏 ) ) ) |
| 41 | f1ofn | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) : ( 𝑅1 ‘ suc suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc suc 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) Fn ( 𝑅1 ‘ suc suc 𝑏 ) ) | |
| 42 | 33 39 40 41 | 4syl | ⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) Fn ( 𝑅1 ‘ suc suc 𝑏 ) ) |
| 43 | nnon | ⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ On ) | |
| 44 | 33 43 | syl | ⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ On ) |
| 45 | r1sssuc | ⊢ ( suc 𝑏 ∈ On → ( 𝑅1 ‘ suc 𝑏 ) ⊆ ( 𝑅1 ‘ suc suc 𝑏 ) ) | |
| 46 | 44 45 | syl | ⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) ⊆ ( 𝑅1 ‘ suc suc 𝑏 ) ) |
| 47 | fnssres | ⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) Fn ( 𝑅1 ‘ suc suc 𝑏 ) ∧ ( 𝑅1 ‘ suc 𝑏 ) ⊆ ( 𝑅1 ‘ suc suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) | |
| 48 | 42 46 47 | syl2anc | ⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) |
| 50 | nnon | ⊢ ( 𝑏 ∈ ω → 𝑏 ∈ On ) | |
| 51 | r1suc | ⊢ ( 𝑏 ∈ On → ( 𝑅1 ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) | |
| 52 | 50 51 | syl | ⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 53 | 52 | eleq2d | ⊢ ( 𝑏 ∈ ω → ( 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ↔ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
| 54 | 53 | biimpa | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 55 | 54 | elpwid | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑐 ⊆ ( 𝑅1 ‘ 𝑏 ) ) |
| 56 | resima2 | ⊢ ( 𝑐 ⊆ ( 𝑅1 ‘ 𝑏 ) → ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) |
| 58 | 57 | fveq2d | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ) |
| 59 | fvex | ⊢ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V | |
| 60 | 59 | resex | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ∈ V |
| 61 | dmeq | ⊢ ( 𝑥 = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → dom 𝑥 = dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) | |
| 62 | 61 | pweqd | ⊢ ( 𝑥 = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → 𝒫 dom 𝑥 = 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) |
| 63 | imaeq1 | ⊢ ( 𝑥 = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝑥 “ 𝑦 ) = ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) | |
| 64 | 63 | fveq2d | ⊢ ( 𝑥 = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) = ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) |
| 65 | 62 64 | mpteq12dv | ⊢ ( 𝑥 = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ) |
| 66 | 60 | dmex | ⊢ dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ∈ V |
| 67 | 66 | pwex | ⊢ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ∈ V |
| 68 | 67 | mptex | ⊢ ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ∈ V |
| 69 | 65 2 68 | fvmpt | ⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ∈ V → ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ) |
| 70 | 60 69 | ax-mp | ⊢ ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) |
| 71 | 70 | fveq1i | ⊢ ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) = ( ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ‘ 𝑐 ) |
| 72 | r1sssuc | ⊢ ( 𝑏 ∈ On → ( 𝑅1 ‘ 𝑏 ) ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) | |
| 73 | 50 72 | syl | ⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ 𝑏 ) ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) |
| 74 | fnssres | ⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) Fn ( 𝑅1 ‘ suc 𝑏 ) ∧ ( 𝑅1 ‘ 𝑏 ) ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) Fn ( 𝑅1 ‘ 𝑏 ) ) | |
| 75 | 37 73 74 | syl2anc | ⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) Fn ( 𝑅1 ‘ 𝑏 ) ) |
| 76 | 75 | fndmd | ⊢ ( 𝑏 ∈ ω → dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) = ( 𝑅1 ‘ 𝑏 ) ) |
| 77 | 76 | pweqd | ⊢ ( 𝑏 ∈ ω → 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 78 | 77 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 79 | 54 78 | eleqtrrd | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑐 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) |
| 80 | imaeq2 | ⊢ ( 𝑦 = 𝑐 → ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) = ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) | |
| 81 | 80 | fveq2d | ⊢ ( 𝑦 = 𝑐 → ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) = ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) ) |
| 82 | eqid | ⊢ ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) | |
| 83 | fvex | ⊢ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) ∈ V | |
| 84 | 81 82 83 | fvmpt | ⊢ ( 𝑐 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) ) |
| 85 | 79 84 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) ) |
| 86 | 71 85 | eqtrid | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) ) |
| 87 | dmeq | ⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → dom 𝑥 = dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) | |
| 88 | 87 | pweqd | ⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → 𝒫 dom 𝑥 = 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 89 | imaeq1 | ⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝑥 “ 𝑦 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) | |
| 90 | 89 | fveq2d | ⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) |
| 91 | 88 90 | mpteq12dv | ⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ) |
| 92 | 59 | dmex | ⊢ dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V |
| 93 | 92 | pwex | ⊢ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V |
| 94 | 93 | mptex | ⊢ ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ∈ V |
| 95 | 91 2 94 | fvmpt | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V → ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ) |
| 96 | 59 95 | ax-mp | ⊢ ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) |
| 97 | 96 | fveq1i | ⊢ ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) |
| 98 | r1tr | ⊢ Tr ( 𝑅1 ‘ suc 𝑏 ) | |
| 99 | 98 | a1i | ⊢ ( 𝑏 ∈ ω → Tr ( 𝑅1 ‘ suc 𝑏 ) ) |
| 100 | dftr4 | ⊢ ( Tr ( 𝑅1 ‘ suc 𝑏 ) ↔ ( 𝑅1 ‘ suc 𝑏 ) ⊆ 𝒫 ( 𝑅1 ‘ suc 𝑏 ) ) | |
| 101 | 99 100 | sylib | ⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) ⊆ 𝒫 ( 𝑅1 ‘ suc 𝑏 ) ) |
| 102 | 101 | sselda | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑐 ∈ 𝒫 ( 𝑅1 ‘ suc 𝑏 ) ) |
| 103 | f1odm | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝑅1 ‘ suc 𝑏 ) ) | |
| 104 | 35 103 | syl | ⊢ ( 𝑏 ∈ ω → dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝑅1 ‘ suc 𝑏 ) ) |
| 105 | 104 | pweqd | ⊢ ( 𝑏 ∈ ω → 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ suc 𝑏 ) ) |
| 106 | 105 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ suc 𝑏 ) ) |
| 107 | 102 106 | eleqtrrd | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑐 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 108 | imaeq2 | ⊢ ( 𝑦 = 𝑐 → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) | |
| 109 | 108 | fveq2d | ⊢ ( 𝑦 = 𝑐 → ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ) |
| 110 | eqid | ⊢ ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) | |
| 111 | fvex | ⊢ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ∈ V | |
| 112 | 109 110 111 | fvmpt | ⊢ ( 𝑐 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ) |
| 113 | 107 112 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ) |
| 114 | 97 113 | eqtrid | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ) |
| 115 | 58 86 114 | 3eqtr4d | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
| 116 | 115 | adantlr | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
| 117 | fveq2 | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) = ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ) | |
| 118 | 117 | fveq1d | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) ) |
| 119 | 118 | ad2antlr | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) ) |
| 120 | rdgsuc | ⊢ ( suc 𝑏 ∈ On → ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) = ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) | |
| 121 | 44 120 | syl | ⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) = ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
| 122 | 121 | fveq1d | ⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
| 123 | 122 | ad2antrr | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
| 124 | 116 119 123 | 3eqtr4rd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ‘ 𝑐 ) ) |
| 125 | fvres | ⊢ ( 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) → ( ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ‘ 𝑐 ) ) | |
| 126 | 125 | adantl | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ‘ 𝑐 ) ) |
| 127 | rdgsuc | ⊢ ( 𝑏 ∈ On → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) | |
| 128 | 50 127 | syl | ⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
| 129 | 128 | fveq1d | ⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ‘ 𝑐 ) ) |
| 130 | 129 | ad2antrr | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ‘ 𝑐 ) ) |
| 131 | 124 126 130 | 3eqtr4rd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ‘ 𝑐 ) = ( ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
| 132 | 38 49 131 | eqfnfvd | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 133 | 132 | ex | ⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
| 134 | 8 14 20 26 32 133 | finds | ⊢ ( 𝐴 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ↾ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 135 | resss | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ↾ ( 𝑅1 ‘ 𝐴 ) ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) | |
| 136 | 134 135 | eqsstrdi | ⊢ ( 𝐴 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ) |