This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two words of length at least two are equal if and only if they have the same prefix and the same two single symbols suffix. (Contributed by AV, 24-Sep-2018) (Revised by AV, 12-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2swrd2eqwrdeq | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 = 𝑈 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 2 | 1z | ⊢ 1 ∈ ℤ | |
| 3 | nn0z | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) | |
| 4 | zltp1le | ⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) → ( 1 < ( ♯ ‘ 𝑊 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑊 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 6 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 7 | 6 | a1i | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 + 1 ) = 2 ) |
| 8 | 7 | breq1d | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ↔ 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 9 | 8 | biimpd | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 10 | 5 9 | sylbid | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑊 ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 11 | 10 | imp | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) |
| 12 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 13 | simpl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 14 | nn0sub | ⊢ ( ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) → ( 2 ≤ ( ♯ ‘ 𝑊 ) ↔ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 2 ≤ ( ♯ ‘ 𝑊 ) ↔ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) ) |
| 16 | 11 15 | mpbid | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) |
| 17 | 3 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 18 | 0red | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 0 ∈ ℝ ) | |
| 19 | 1red | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 1 ∈ ℝ ) | |
| 20 | nn0re | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) | |
| 21 | 18 19 20 | 3jca | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) ) |
| 22 | 0lt1 | ⊢ 0 < 1 | |
| 23 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) ) | |
| 24 | 23 | expd | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) → ( 0 < 1 → ( 1 < ( ♯ ‘ 𝑊 ) → 0 < ( ♯ ‘ 𝑊 ) ) ) ) |
| 25 | 21 22 24 | mpisyl | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑊 ) → 0 < ( ♯ ‘ 𝑊 ) ) ) |
| 26 | 25 | imp | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) |
| 27 | elnnz | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝑊 ) ) ) | |
| 28 | 17 26 27 | sylanbrc | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 29 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 30 | 29 | a1i | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 2 ∈ ℝ+ ) |
| 31 | 20 30 | ltsubrpd | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) − 2 ) < ( ♯ ‘ 𝑊 ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 2 ) < ( ♯ ‘ 𝑊 ) ) |
| 33 | elfzo0 | ⊢ ( ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝑊 ) − 2 ) < ( ♯ ‘ 𝑊 ) ) ) | |
| 34 | 16 28 32 33 | syl3anbrc | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 35 | 1 34 | sylan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 36 | 35 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 37 | pfxsuffeqwrdeq | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 = 𝑈 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) | |
| 38 | 36 37 | syld3an3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 = 𝑈 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) |
| 39 | swrd2lsw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 ) | |
| 40 | 39 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 ) |
| 42 | breq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( 1 < ( ♯ ‘ 𝑊 ) ↔ 1 < ( ♯ ‘ 𝑈 ) ) ) | |
| 43 | 42 | 3anbi3d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑈 ) ) ) ) |
| 44 | swrd2lsw | ⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑈 ) ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 2 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ) | |
| 45 | 44 | 3adant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑈 ) ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 2 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ) |
| 46 | 43 45 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 2 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 47 | 46 | impcom | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 2 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ) |
| 48 | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ( ♯ ‘ 𝑊 ) − 2 ) = ( ( ♯ ‘ 𝑈 ) − 2 ) ) | |
| 49 | id | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) | |
| 50 | 48 49 | opeq12d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 = 〈 ( ( ♯ ‘ 𝑈 ) − 2 ) , ( ♯ ‘ 𝑈 ) 〉 ) |
| 51 | 50 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 2 ) , ( ♯ ‘ 𝑈 ) 〉 ) ) |
| 52 | 51 | eqeq1d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ↔ ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 2 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 53 | 52 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ↔ ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 2 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 54 | 47 53 | mpbird | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ) |
| 55 | 41 54 | eqeq12d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) ↔ 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 56 | fvexd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∈ V ) | |
| 57 | fvexd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( lastS ‘ 𝑊 ) ∈ V ) | |
| 58 | fvexd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ∈ V ) | |
| 59 | fvexd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( lastS ‘ 𝑈 ) ∈ V ) | |
| 60 | s2eq2s1eq | ⊢ ( ( ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∈ V ∧ ( lastS ‘ 𝑊 ) ∈ V ) ∧ ( ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ∈ V ∧ ( lastS ‘ 𝑈 ) ∈ V ) ) → ( 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ↔ ( 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ”〉 = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ”〉 ∧ 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) ) | |
| 61 | 56 57 58 59 60 | syl22anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ( lastS ‘ 𝑈 ) ”〉 ↔ ( 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ”〉 = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ”〉 ∧ 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) ) |
| 62 | fvex | ⊢ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∈ V | |
| 63 | s111 | ⊢ ( ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∈ V ∧ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ∈ V ) → ( 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ”〉 = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ”〉 ↔ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ) ) | |
| 64 | 62 58 63 | sylancr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ”〉 = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ”〉 ↔ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ) ) |
| 65 | fvoveq1 | ⊢ ( ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) → ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) | |
| 66 | 65 | eqcoms | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) |
| 67 | 66 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) |
| 68 | 67 | eqeq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ↔ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) ) |
| 69 | 64 68 | bitrd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ”〉 = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ”〉 ↔ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) ) |
| 70 | fvex | ⊢ ( lastS ‘ 𝑊 ) ∈ V | |
| 71 | s111 | ⊢ ( ( ( lastS ‘ 𝑊 ) ∈ V ∧ ( lastS ‘ 𝑈 ) ∈ V ) → ( 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( lastS ‘ 𝑈 ) ”〉 ↔ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) | |
| 72 | 70 59 71 | sylancr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( lastS ‘ 𝑈 ) ”〉 ↔ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) |
| 73 | 69 72 | anbi12d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ”〉 = 〈“ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 ) − 2 ) ) ”〉 ∧ 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ↔ ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) |
| 74 | 55 61 73 | 3bitrd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) ↔ ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) |
| 75 | 74 | anbi2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) ) ↔ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) ) |
| 76 | 3anass | ⊢ ( ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ↔ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) | |
| 77 | 75 76 | bitr4di | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) ) ↔ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) |
| 78 | 77 | pm5.32da | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) ) |
| 79 | 38 78 | bitrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 = 𝑈 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑈 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) ) |