This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem lttr

Description: Alias for axlttrn , for naming consistency with lttri . New proofs should generally use this instead of ax-pre-lttrn . (Contributed by NM, 10-Mar-2008)

Ref Expression
Assertion lttr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )

Proof

Step Hyp Ref Expression
1 axlttrn ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )