This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrd2lsw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 3 | 1z | ⊢ 1 ∈ ℤ | |
| 4 | nn0z | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) | |
| 5 | zltp1le | ⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) → ( 1 < ( ♯ ‘ 𝑊 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑊 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 7 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 8 | 7 | a1i | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 + 1 ) = 2 ) |
| 9 | 8 | breq1d | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ↔ 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 10 | 9 | biimpd | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 11 | 6 10 | sylbid | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑊 ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 12 | 11 | imp | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) |
| 13 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 14 | 13 | jctl | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) ) |
| 16 | nn0sub | ⊢ ( ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) → ( 2 ≤ ( ♯ ‘ 𝑊 ) ↔ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 2 ≤ ( ♯ ‘ 𝑊 ) ↔ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) ) |
| 18 | 12 17 | mpbid | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) |
| 19 | 2 18 | sylan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) |
| 20 | 0red | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → 0 ∈ ℝ ) | |
| 21 | 1red | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → 1 ∈ ℝ ) | |
| 22 | zre | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( ♯ ‘ 𝑊 ) ∈ ℝ ) | |
| 23 | 20 21 22 | 3jca | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) ) |
| 24 | 0lt1 | ⊢ 0 < 1 | |
| 25 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) ) | |
| 26 | 25 | expd | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) → ( 0 < 1 → ( 1 < ( ♯ ‘ 𝑊 ) → 0 < ( ♯ ‘ 𝑊 ) ) ) ) |
| 27 | 23 24 26 | mpisyl | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 1 < ( ♯ ‘ 𝑊 ) → 0 < ( ♯ ‘ 𝑊 ) ) ) |
| 28 | elnnz | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝑊 ) ) ) | |
| 29 | 28 | simplbi2 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 < ( ♯ ‘ 𝑊 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 30 | 27 29 | syld | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 1 < ( ♯ ‘ 𝑊 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 31 | 4 30 | syl | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑊 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 32 | 31 | imp | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 33 | fzo0end | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 34 | 32 33 | syl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 35 | nn0cn | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) | |
| 36 | 2cn | ⊢ 2 ∈ ℂ | |
| 37 | 36 | a1i | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 2 ∈ ℂ ) |
| 38 | 1cnd | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 1 ∈ ℂ ) | |
| 39 | 35 37 38 | 3jca | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ ) ) |
| 40 | 1e2m1 | ⊢ 1 = ( 2 − 1 ) | |
| 41 | 40 | a1i | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ ) → 1 = ( 2 − 1 ) ) |
| 42 | 41 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − ( 2 − 1 ) ) ) |
| 43 | subsub | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ♯ ‘ 𝑊 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) | |
| 44 | 42 43 | eqtrd | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) |
| 45 | 39 44 | syl | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) |
| 46 | 45 | eqcomd | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 47 | 46 | eleq1d | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 49 | 34 48 | mpbird | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 50 | 2 49 | sylan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 51 | 1 19 50 | 3jca | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ∧ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 52 | swrds2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ∧ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ”〉 ) | |
| 53 | 51 52 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ”〉 ) |
| 54 | 35 36 | jctir | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ) ) |
| 55 | npcan | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) = ( ♯ ‘ 𝑊 ) ) | |
| 56 | 55 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) ) |
| 57 | 2 54 56 | 3syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) ) |
| 58 | 57 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) ) |
| 59 | 58 | opeq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 = 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) 〉 ) |
| 60 | 59 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) 〉 ) ) |
| 61 | eqidd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) | |
| 62 | lsw | ⊢ ( 𝑊 ∈ Word 𝑉 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 63 | 39 43 | syl | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) |
| 64 | 63 | eqcomd | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) − ( 2 − 1 ) ) ) |
| 65 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 66 | 65 | a1i | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 2 − 1 ) = 1 ) |
| 67 | 66 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) − ( 2 − 1 ) ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 68 | 64 67 | eqtrd | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 69 | 2 68 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 70 | 69 | eqcomd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) |
| 71 | 70 | fveq2d | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ) |
| 72 | 62 71 | eqtrd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ) |
| 73 | 72 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ) |
| 74 | 61 73 | s2eqd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ”〉 ) |
| 75 | 53 60 74 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 ) |