This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0sub | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 2 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 3 | leloe | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ) ) ) |
| 5 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 6 | elnn0 | ⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) | |
| 7 | nnsub | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) | |
| 8 | 7 | ex | ⊢ ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
| 9 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 10 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 11 | 10 | subid1d | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 0 ) = 𝑁 ) |
| 12 | id | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) | |
| 13 | 11 12 | eqeltrd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 0 ) ∈ ℕ ) |
| 14 | 9 13 | 2thd | ⊢ ( 𝑁 ∈ ℕ → ( 0 < 𝑁 ↔ ( 𝑁 − 0 ) ∈ ℕ ) ) |
| 15 | breq1 | ⊢ ( 𝑀 = 0 → ( 𝑀 < 𝑁 ↔ 0 < 𝑁 ) ) | |
| 16 | oveq2 | ⊢ ( 𝑀 = 0 → ( 𝑁 − 𝑀 ) = ( 𝑁 − 0 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑀 = 0 → ( ( 𝑁 − 𝑀 ) ∈ ℕ ↔ ( 𝑁 − 0 ) ∈ ℕ ) ) |
| 18 | 15 17 | bibi12d | ⊢ ( 𝑀 = 0 → ( ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ↔ ( 0 < 𝑁 ↔ ( 𝑁 − 0 ) ∈ ℕ ) ) ) |
| 19 | 14 18 | imbitrrid | ⊢ ( 𝑀 = 0 → ( 𝑁 ∈ ℕ → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
| 20 | 8 19 | jaoi | ⊢ ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
| 21 | 6 20 | sylbi | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
| 22 | nn0nlt0 | ⊢ ( 𝑀 ∈ ℕ0 → ¬ 𝑀 < 0 ) | |
| 23 | 22 | pm2.21d | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 < 0 → ( 0 − 𝑀 ) ∈ ℕ ) ) |
| 24 | nngt0 | ⊢ ( ( 0 − 𝑀 ) ∈ ℕ → 0 < ( 0 − 𝑀 ) ) | |
| 25 | 0re | ⊢ 0 ∈ ℝ | |
| 26 | posdif | ⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑀 < 0 ↔ 0 < ( 0 − 𝑀 ) ) ) | |
| 27 | 1 25 26 | sylancl | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 < 0 ↔ 0 < ( 0 − 𝑀 ) ) ) |
| 28 | 24 27 | imbitrrid | ⊢ ( 𝑀 ∈ ℕ0 → ( ( 0 − 𝑀 ) ∈ ℕ → 𝑀 < 0 ) ) |
| 29 | 23 28 | impbid | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 < 0 ↔ ( 0 − 𝑀 ) ∈ ℕ ) ) |
| 30 | breq2 | ⊢ ( 𝑁 = 0 → ( 𝑀 < 𝑁 ↔ 𝑀 < 0 ) ) | |
| 31 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 − 𝑀 ) = ( 0 − 𝑀 ) ) | |
| 32 | 31 | eleq1d | ⊢ ( 𝑁 = 0 → ( ( 𝑁 − 𝑀 ) ∈ ℕ ↔ ( 0 − 𝑀 ) ∈ ℕ ) ) |
| 33 | 30 32 | bibi12d | ⊢ ( 𝑁 = 0 → ( ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ↔ ( 𝑀 < 0 ↔ ( 0 − 𝑀 ) ∈ ℕ ) ) ) |
| 34 | 29 33 | syl5ibrcom | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 = 0 → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
| 35 | 21 34 | jaod | ⊢ ( 𝑀 ∈ ℕ0 → ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
| 36 | 5 35 | biimtrid | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) ) |
| 37 | 36 | imp | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
| 38 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 39 | nn0cn | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) | |
| 40 | subeq0 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑁 − 𝑀 ) = 0 ↔ 𝑁 = 𝑀 ) ) | |
| 41 | 38 39 40 | syl2anr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 − 𝑀 ) = 0 ↔ 𝑁 = 𝑀 ) ) |
| 42 | eqcom | ⊢ ( 𝑁 = 𝑀 ↔ 𝑀 = 𝑁 ) | |
| 43 | 41 42 | bitr2di | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 = 𝑁 ↔ ( 𝑁 − 𝑀 ) = 0 ) ) |
| 44 | 37 43 | orbi12d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ) ↔ ( ( 𝑁 − 𝑀 ) ∈ ℕ ∨ ( 𝑁 − 𝑀 ) = 0 ) ) ) |
| 45 | 4 44 | bitrd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( ( 𝑁 − 𝑀 ) ∈ ℕ ∨ ( 𝑁 − 𝑀 ) = 0 ) ) ) |
| 46 | elnn0 | ⊢ ( ( 𝑁 − 𝑀 ) ∈ ℕ0 ↔ ( ( 𝑁 − 𝑀 ) ∈ ℕ ∨ ( 𝑁 − 𝑀 ) = 0 ) ) | |
| 47 | 45 46 | bitr4di | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) |