This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two words are equal if and only if they have the same prefix and the same suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018) (Revised by AV, 5-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxsuffeqwrdeq | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 = 𝑆 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ∧ ( ( 𝑊 prefix 𝐼 ) = ( 𝑆 prefix 𝐼 ) ∧ ( 𝑊 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑆 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqwrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ) → ( 𝑊 = 𝑆 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 = 𝑆 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) ) |
| 3 | elfzofz | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 4 | fzosplit | ⊢ ( 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( ( 0 ..^ 𝐼 ) ∪ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( ( 0 ..^ 𝐼 ) ∪ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( ( 0 ..^ 𝐼 ) ∪ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( ( 0 ..^ 𝐼 ) ∪ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 8 | 7 | raleqdv | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( 0 ..^ 𝐼 ) ∪ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) |
| 9 | ralunb | ⊢ ( ∀ 𝑖 ∈ ( ( 0 ..^ 𝐼 ) ∪ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) | |
| 10 | 8 9 | bitrdi | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) ) |
| 11 | eqidd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → 𝐼 = 𝐼 ) | |
| 12 | 3simpa | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ) ) | |
| 13 | 12 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ) ) |
| 14 | elfzonn0 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℕ0 ) | |
| 15 | 14 14 | jca | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( 𝐼 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) ) |
| 18 | elfzo0le | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ≤ ( ♯ ‘ 𝑊 ) ) | |
| 19 | 18 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ≤ ( ♯ ‘ 𝑊 ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → 𝐼 ≤ ( ♯ ‘ 𝑊 ) ) |
| 21 | breq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) → ( 𝐼 ≤ ( ♯ ‘ 𝑊 ) ↔ 𝐼 ≤ ( ♯ ‘ 𝑆 ) ) ) | |
| 22 | 21 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( 𝐼 ≤ ( ♯ ‘ 𝑊 ) ↔ 𝐼 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 23 | 20 22 | mpbid | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → 𝐼 ≤ ( ♯ ‘ 𝑆 ) ) |
| 24 | pfxeq | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ) ∧ ( 𝐼 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) ∧ ( 𝐼 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝐼 ≤ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑊 prefix 𝐼 ) = ( 𝑆 prefix 𝐼 ) ↔ ( 𝐼 = 𝐼 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) ) | |
| 25 | 13 17 20 23 24 | syl112anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ( 𝑊 prefix 𝐼 ) = ( 𝑆 prefix 𝐼 ) ↔ ( 𝐼 = 𝐼 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) ) |
| 26 | 11 25 | mpbirand | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ( 𝑊 prefix 𝐼 ) = ( 𝑆 prefix 𝐼 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) |
| 27 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 28 | 27 14 | anim12ci | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) ) |
| 29 | 28 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) ) |
| 31 | 27 | nn0red | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 32 | 31 | leidd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ≤ ( ♯ ‘ 𝑊 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑊 ) ≤ ( ♯ ‘ 𝑊 ) ) |
| 34 | eqle | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑊 ) ≤ ( ♯ ‘ 𝑆 ) ) | |
| 35 | 31 34 | sylan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑊 ) ≤ ( ♯ ‘ 𝑆 ) ) |
| 36 | 33 35 | jca | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ( ♯ ‘ 𝑊 ) ≤ ( ♯ ‘ 𝑊 ) ∧ ( ♯ ‘ 𝑊 ) ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 37 | 36 | 3ad2antl1 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ( ♯ ‘ 𝑊 ) ≤ ( ♯ ‘ 𝑊 ) ∧ ( ♯ ‘ 𝑊 ) ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 38 | swrdspsleq | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ) ∧ ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ ( ♯ ‘ 𝑊 ) ∧ ( ♯ ‘ 𝑊 ) ≤ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑊 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑆 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) ↔ ∀ 𝑖 ∈ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) | |
| 39 | 13 30 37 38 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ( 𝑊 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑆 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) ↔ ∀ 𝑖 ∈ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) |
| 40 | 26 39 | anbi12d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ( ( 𝑊 prefix 𝐼 ) = ( 𝑆 prefix 𝐼 ) ∧ ( 𝑊 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑆 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ) ) |
| 41 | 10 40 | bitr4d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ↔ ( ( 𝑊 prefix 𝐼 ) = ( 𝑆 prefix 𝐼 ) ∧ ( 𝑊 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑆 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
| 42 | 41 | pm5.32da | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ∧ ( ( 𝑊 prefix 𝐼 ) = ( 𝑆 prefix 𝐼 ) ∧ ( 𝑊 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑆 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) |
| 43 | 2 42 | bitrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 = 𝑆 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑆 ) ∧ ( ( 𝑊 prefix 𝐼 ) = ( 𝑆 prefix 𝐼 ) ∧ ( 𝑊 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑆 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) |