This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two words of length at least two are equal if and only if they have the same prefix and the same two single symbols suffix. (Contributed by AV, 24-Sep-2018) (Revised by AV, 12-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2swrd2eqwrdeq | |- ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) -> ( W = U <-> ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 2 | 1z | |- 1 e. ZZ |
|
| 3 | nn0z | |- ( ( # ` W ) e. NN0 -> ( # ` W ) e. ZZ ) |
|
| 4 | zltp1le | |- ( ( 1 e. ZZ /\ ( # ` W ) e. ZZ ) -> ( 1 < ( # ` W ) <-> ( 1 + 1 ) <_ ( # ` W ) ) ) |
|
| 5 | 2 3 4 | sylancr | |- ( ( # ` W ) e. NN0 -> ( 1 < ( # ` W ) <-> ( 1 + 1 ) <_ ( # ` W ) ) ) |
| 6 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 7 | 6 | a1i | |- ( ( # ` W ) e. NN0 -> ( 1 + 1 ) = 2 ) |
| 8 | 7 | breq1d | |- ( ( # ` W ) e. NN0 -> ( ( 1 + 1 ) <_ ( # ` W ) <-> 2 <_ ( # ` W ) ) ) |
| 9 | 8 | biimpd | |- ( ( # ` W ) e. NN0 -> ( ( 1 + 1 ) <_ ( # ` W ) -> 2 <_ ( # ` W ) ) ) |
| 10 | 5 9 | sylbid | |- ( ( # ` W ) e. NN0 -> ( 1 < ( # ` W ) -> 2 <_ ( # ` W ) ) ) |
| 11 | 10 | imp | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> 2 <_ ( # ` W ) ) |
| 12 | 2nn0 | |- 2 e. NN0 |
|
| 13 | simpl | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( # ` W ) e. NN0 ) |
|
| 14 | nn0sub | |- ( ( 2 e. NN0 /\ ( # ` W ) e. NN0 ) -> ( 2 <_ ( # ` W ) <-> ( ( # ` W ) - 2 ) e. NN0 ) ) |
|
| 15 | 12 13 14 | sylancr | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( 2 <_ ( # ` W ) <-> ( ( # ` W ) - 2 ) e. NN0 ) ) |
| 16 | 11 15 | mpbid | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 2 ) e. NN0 ) |
| 17 | 3 | adantr | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( # ` W ) e. ZZ ) |
| 18 | 0red | |- ( ( # ` W ) e. NN0 -> 0 e. RR ) |
|
| 19 | 1red | |- ( ( # ` W ) e. NN0 -> 1 e. RR ) |
|
| 20 | nn0re | |- ( ( # ` W ) e. NN0 -> ( # ` W ) e. RR ) |
|
| 21 | 18 19 20 | 3jca | |- ( ( # ` W ) e. NN0 -> ( 0 e. RR /\ 1 e. RR /\ ( # ` W ) e. RR ) ) |
| 22 | 0lt1 | |- 0 < 1 |
|
| 23 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ ( # ` W ) e. RR ) -> ( ( 0 < 1 /\ 1 < ( # ` W ) ) -> 0 < ( # ` W ) ) ) |
|
| 24 | 23 | expd | |- ( ( 0 e. RR /\ 1 e. RR /\ ( # ` W ) e. RR ) -> ( 0 < 1 -> ( 1 < ( # ` W ) -> 0 < ( # ` W ) ) ) ) |
| 25 | 21 22 24 | mpisyl | |- ( ( # ` W ) e. NN0 -> ( 1 < ( # ` W ) -> 0 < ( # ` W ) ) ) |
| 26 | 25 | imp | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> 0 < ( # ` W ) ) |
| 27 | elnnz | |- ( ( # ` W ) e. NN <-> ( ( # ` W ) e. ZZ /\ 0 < ( # ` W ) ) ) |
|
| 28 | 17 26 27 | sylanbrc | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 29 | 2rp | |- 2 e. RR+ |
|
| 30 | 29 | a1i | |- ( ( # ` W ) e. NN0 -> 2 e. RR+ ) |
| 31 | 20 30 | ltsubrpd | |- ( ( # ` W ) e. NN0 -> ( ( # ` W ) - 2 ) < ( # ` W ) ) |
| 32 | 31 | adantr | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 2 ) < ( # ` W ) ) |
| 33 | elfzo0 | |- ( ( ( # ` W ) - 2 ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( ( # ` W ) - 2 ) e. NN0 /\ ( # ` W ) e. NN /\ ( ( # ` W ) - 2 ) < ( # ` W ) ) ) |
|
| 34 | 16 28 32 33 | syl3anbrc | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 2 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 35 | 1 34 | sylan | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 2 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 36 | 35 | 3adant2 | |- ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 2 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 37 | pfxsuffeqwrdeq | |- ( ( W e. Word V /\ U e. Word V /\ ( ( # ` W ) - 2 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W = U <-> ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) ) ) ) ) |
|
| 38 | 36 37 | syld3an3 | |- ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) -> ( W = U <-> ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) ) ) ) ) |
| 39 | swrd2lsw | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> ) |
|
| 40 | 39 | 3adant2 | |- ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> ) |
| 41 | 40 | adantr | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> ) |
| 42 | breq2 | |- ( ( # ` W ) = ( # ` U ) -> ( 1 < ( # ` W ) <-> 1 < ( # ` U ) ) ) |
|
| 43 | 42 | 3anbi3d | |- ( ( # ` W ) = ( # ` U ) -> ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) <-> ( W e. Word V /\ U e. Word V /\ 1 < ( # ` U ) ) ) ) |
| 44 | swrd2lsw | |- ( ( U e. Word V /\ 1 < ( # ` U ) ) -> ( U substr <. ( ( # ` U ) - 2 ) , ( # ` U ) >. ) = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> ) |
|
| 45 | 44 | 3adant1 | |- ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` U ) ) -> ( U substr <. ( ( # ` U ) - 2 ) , ( # ` U ) >. ) = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> ) |
| 46 | 43 45 | biimtrdi | |- ( ( # ` W ) = ( # ` U ) -> ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) -> ( U substr <. ( ( # ` U ) - 2 ) , ( # ` U ) >. ) = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> ) ) |
| 47 | 46 | impcom | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( U substr <. ( ( # ` U ) - 2 ) , ( # ` U ) >. ) = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> ) |
| 48 | oveq1 | |- ( ( # ` W ) = ( # ` U ) -> ( ( # ` W ) - 2 ) = ( ( # ` U ) - 2 ) ) |
|
| 49 | id | |- ( ( # ` W ) = ( # ` U ) -> ( # ` W ) = ( # ` U ) ) |
|
| 50 | 48 49 | opeq12d | |- ( ( # ` W ) = ( # ` U ) -> <. ( ( # ` W ) - 2 ) , ( # ` W ) >. = <. ( ( # ` U ) - 2 ) , ( # ` U ) >. ) |
| 51 | 50 | oveq2d | |- ( ( # ` W ) = ( # ` U ) -> ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` U ) - 2 ) , ( # ` U ) >. ) ) |
| 52 | 51 | eqeq1d | |- ( ( # ` W ) = ( # ` U ) -> ( ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> <-> ( U substr <. ( ( # ` U ) - 2 ) , ( # ` U ) >. ) = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> ) ) |
| 53 | 52 | adantl | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> <-> ( U substr <. ( ( # ` U ) - 2 ) , ( # ` U ) >. ) = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> ) ) |
| 54 | 47 53 | mpbird | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> ) |
| 55 | 41 54 | eqeq12d | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) <-> <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> ) ) |
| 56 | fvexd | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( W ` ( ( # ` W ) - 2 ) ) e. _V ) |
|
| 57 | fvexd | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( lastS ` W ) e. _V ) |
|
| 58 | fvexd | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( U ` ( ( # ` U ) - 2 ) ) e. _V ) |
|
| 59 | fvexd | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( lastS ` U ) e. _V ) |
|
| 60 | s2eq2s1eq | |- ( ( ( ( W ` ( ( # ` W ) - 2 ) ) e. _V /\ ( lastS ` W ) e. _V ) /\ ( ( U ` ( ( # ` U ) - 2 ) ) e. _V /\ ( lastS ` U ) e. _V ) ) -> ( <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> <-> ( <" ( W ` ( ( # ` W ) - 2 ) ) "> = <" ( U ` ( ( # ` U ) - 2 ) ) "> /\ <" ( lastS ` W ) "> = <" ( lastS ` U ) "> ) ) ) |
|
| 61 | 56 57 58 59 60 | syl22anc | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> = <" ( U ` ( ( # ` U ) - 2 ) ) ( lastS ` U ) "> <-> ( <" ( W ` ( ( # ` W ) - 2 ) ) "> = <" ( U ` ( ( # ` U ) - 2 ) ) "> /\ <" ( lastS ` W ) "> = <" ( lastS ` U ) "> ) ) ) |
| 62 | fvex | |- ( W ` ( ( # ` W ) - 2 ) ) e. _V |
|
| 63 | s111 | |- ( ( ( W ` ( ( # ` W ) - 2 ) ) e. _V /\ ( U ` ( ( # ` U ) - 2 ) ) e. _V ) -> ( <" ( W ` ( ( # ` W ) - 2 ) ) "> = <" ( U ` ( ( # ` U ) - 2 ) ) "> <-> ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` U ) - 2 ) ) ) ) |
|
| 64 | 62 58 63 | sylancr | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( <" ( W ` ( ( # ` W ) - 2 ) ) "> = <" ( U ` ( ( # ` U ) - 2 ) ) "> <-> ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` U ) - 2 ) ) ) ) |
| 65 | fvoveq1 | |- ( ( # ` U ) = ( # ` W ) -> ( U ` ( ( # ` U ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) ) |
|
| 66 | 65 | eqcoms | |- ( ( # ` W ) = ( # ` U ) -> ( U ` ( ( # ` U ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) ) |
| 67 | 66 | adantl | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( U ` ( ( # ` U ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) ) |
| 68 | 67 | eqeq2d | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` U ) - 2 ) ) <-> ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) ) ) |
| 69 | 64 68 | bitrd | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( <" ( W ` ( ( # ` W ) - 2 ) ) "> = <" ( U ` ( ( # ` U ) - 2 ) ) "> <-> ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) ) ) |
| 70 | fvex | |- ( lastS ` W ) e. _V |
|
| 71 | s111 | |- ( ( ( lastS ` W ) e. _V /\ ( lastS ` U ) e. _V ) -> ( <" ( lastS ` W ) "> = <" ( lastS ` U ) "> <-> ( lastS ` W ) = ( lastS ` U ) ) ) |
|
| 72 | 70 59 71 | sylancr | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( <" ( lastS ` W ) "> = <" ( lastS ` U ) "> <-> ( lastS ` W ) = ( lastS ` U ) ) ) |
| 73 | 69 72 | anbi12d | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( <" ( W ` ( ( # ` W ) - 2 ) ) "> = <" ( U ` ( ( # ` U ) - 2 ) ) "> /\ <" ( lastS ` W ) "> = <" ( lastS ` U ) "> ) <-> ( ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) |
| 74 | 55 61 73 | 3bitrd | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) <-> ( ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) |
| 75 | 74 | anbi2d | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) ) <-> ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) ) |
| 76 | 3anass | |- ( ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) <-> ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) |
|
| 77 | 75 76 | bitr4di | |- ( ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) ) <-> ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) |
| 78 | 77 | pm5.32da | |- ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) -> ( ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) ) ) <-> ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) ) |
| 79 | 38 78 | bitrd | |- ( ( W e. Word V /\ U e. Word V /\ 1 < ( # ` W ) ) -> ( W = U <-> ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 2 ) ) = ( U prefix ( ( # ` W ) - 2 ) ) /\ ( W ` ( ( # ` W ) - 2 ) ) = ( U ` ( ( # ` W ) - 2 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) ) |