This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndc1stc | ⊢ ( 𝐽 ∈ 2ndω → 𝐽 ∈ 1stω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndctop | ⊢ ( 𝐽 ∈ 2ndω → 𝐽 ∈ Top ) | |
| 2 | is2ndc | ⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) | |
| 3 | ssrab2 | ⊢ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ⊆ 𝑏 | |
| 4 | bastg | ⊢ ( 𝑏 ∈ TopBases → 𝑏 ⊆ ( topGen ‘ 𝑏 ) ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → 𝑏 ⊆ ( topGen ‘ 𝑏 ) ) |
| 6 | 3 5 | sstrid | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ⊆ ( topGen ‘ 𝑏 ) ) |
| 7 | fvex | ⊢ ( topGen ‘ 𝑏 ) ∈ V | |
| 8 | 7 | elpw2 | ⊢ ( { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ∈ 𝒫 ( topGen ‘ 𝑏 ) ↔ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ⊆ ( topGen ‘ 𝑏 ) ) |
| 9 | 6 8 | sylibr | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ∈ 𝒫 ( topGen ‘ 𝑏 ) ) |
| 10 | vex | ⊢ 𝑏 ∈ V | |
| 11 | ssdomg | ⊢ ( 𝑏 ∈ V → ( { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ⊆ 𝑏 → { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ≼ 𝑏 ) ) | |
| 12 | 10 3 11 | mp2 | ⊢ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ≼ 𝑏 |
| 13 | simp2 | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → 𝑏 ≼ ω ) | |
| 14 | domtr | ⊢ ( ( { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ≼ 𝑏 ∧ 𝑏 ≼ ω ) → { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ≼ ω ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ≼ ω ) |
| 16 | eltg2b | ⊢ ( 𝑏 ∈ TopBases → ( 𝑜 ∈ ( topGen ‘ 𝑏 ) ↔ ∀ 𝑦 ∈ 𝑜 ∃ 𝑡 ∈ 𝑏 ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) ) | |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → ( 𝑜 ∈ ( topGen ‘ 𝑏 ) ↔ ∀ 𝑦 ∈ 𝑜 ∃ 𝑡 ∈ 𝑏 ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) ) |
| 18 | elequ1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑡 ↔ 𝑥 ∈ 𝑡 ) ) | |
| 19 | 18 | anbi1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ↔ ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) ) |
| 20 | 19 | rexbidv | ⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑡 ∈ 𝑏 ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ↔ ∃ 𝑡 ∈ 𝑏 ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) ) |
| 21 | 20 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝑜 ∃ 𝑡 ∈ 𝑏 ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) → ( 𝑥 ∈ 𝑜 → ∃ 𝑡 ∈ 𝑏 ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) ) |
| 22 | id | ⊢ ( ( 𝑡 ∈ 𝑏 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑡 ∈ 𝑏 ∧ 𝑥 ∈ 𝑡 ) ) | |
| 23 | 22 | adantrr | ⊢ ( ( 𝑡 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) → ( 𝑡 ∈ 𝑏 ∧ 𝑥 ∈ 𝑡 ) ) |
| 24 | elequ2 | ⊢ ( 𝑞 = 𝑡 → ( 𝑥 ∈ 𝑞 ↔ 𝑥 ∈ 𝑡 ) ) | |
| 25 | 24 | elrab | ⊢ ( 𝑡 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ↔ ( 𝑡 ∈ 𝑏 ∧ 𝑥 ∈ 𝑡 ) ) |
| 26 | 23 25 | sylibr | ⊢ ( ( 𝑡 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) → 𝑡 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ) |
| 27 | simprr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) ∧ ( 𝑡 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) ) → ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) | |
| 28 | elequ2 | ⊢ ( 𝑝 = 𝑡 → ( 𝑥 ∈ 𝑝 ↔ 𝑥 ∈ 𝑡 ) ) | |
| 29 | sseq1 | ⊢ ( 𝑝 = 𝑡 → ( 𝑝 ⊆ 𝑜 ↔ 𝑡 ⊆ 𝑜 ) ) | |
| 30 | 28 29 | anbi12d | ⊢ ( 𝑝 = 𝑡 → ( ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ↔ ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) ) |
| 31 | 30 | rspcev | ⊢ ( ( 𝑡 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) → ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) |
| 32 | 26 27 31 | syl2an2 | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) ∧ ( 𝑡 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) ) ) → ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) |
| 33 | 32 | rexlimdvaa | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → ( ∃ 𝑡 ∈ 𝑏 ( 𝑥 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) → ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) |
| 34 | 21 33 | syl9r | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → ( ∀ 𝑦 ∈ 𝑜 ∃ 𝑡 ∈ 𝑏 ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑜 ) → ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) |
| 35 | 17 34 | sylbid | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → ( 𝑜 ∈ ( topGen ‘ 𝑏 ) → ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) |
| 36 | 35 | ralrimiv | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) |
| 37 | breq1 | ⊢ ( 𝑠 = { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } → ( 𝑠 ≼ ω ↔ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ≼ ω ) ) | |
| 38 | rexeq | ⊢ ( 𝑠 = { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } → ( ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ↔ ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) | |
| 39 | 38 | imbi2d | ⊢ ( 𝑠 = { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } → ( ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ↔ ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) |
| 40 | 39 | ralbidv | ⊢ ( 𝑠 = { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } → ( ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ↔ ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) |
| 41 | 37 40 | anbi12d | ⊢ ( 𝑠 = { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } → ( ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ↔ ( { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ≼ ω ∧ ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ) |
| 42 | 41 | rspcev | ⊢ ( ( { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ∈ 𝒫 ( topGen ‘ 𝑏 ) ∧ ( { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ≼ ω ∧ ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ { 𝑞 ∈ 𝑏 ∣ 𝑥 ∈ 𝑞 } ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) → ∃ 𝑠 ∈ 𝒫 ( topGen ‘ 𝑏 ) ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) |
| 43 | 9 15 36 42 | syl12anc | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ) → ∃ 𝑠 ∈ 𝒫 ( topGen ‘ 𝑏 ) ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) |
| 44 | 43 | 3expia | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → ( 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) → ∃ 𝑠 ∈ 𝒫 ( topGen ‘ 𝑏 ) ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ) |
| 45 | unieq | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ∪ ( topGen ‘ 𝑏 ) = ∪ 𝐽 ) | |
| 46 | 45 | eleq2d | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) ↔ 𝑥 ∈ ∪ 𝐽 ) ) |
| 47 | pweq | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → 𝒫 ( topGen ‘ 𝑏 ) = 𝒫 𝐽 ) | |
| 48 | raleq | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) | |
| 49 | 48 | anbi2d | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ↔ ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ) |
| 50 | 47 49 | rexeqbidv | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ∃ 𝑠 ∈ 𝒫 ( topGen ‘ 𝑏 ) ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ↔ ∃ 𝑠 ∈ 𝒫 𝐽 ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ) |
| 51 | 46 50 | imbi12d | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( 𝑥 ∈ ∪ ( topGen ‘ 𝑏 ) → ∃ 𝑠 ∈ 𝒫 ( topGen ‘ 𝑏 ) ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ ( topGen ‘ 𝑏 ) ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ↔ ( 𝑥 ∈ ∪ 𝐽 → ∃ 𝑠 ∈ 𝒫 𝐽 ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ) ) |
| 52 | 44 51 | syl5ibcom | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( 𝑥 ∈ ∪ 𝐽 → ∃ 𝑠 ∈ 𝒫 𝐽 ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ) ) |
| 53 | 52 | expimpd | ⊢ ( 𝑏 ∈ TopBases → ( ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) → ( 𝑥 ∈ ∪ 𝐽 → ∃ 𝑠 ∈ 𝒫 𝐽 ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ) ) |
| 54 | 53 | rexlimiv | ⊢ ( ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) → ( 𝑥 ∈ ∪ 𝐽 → ∃ 𝑠 ∈ 𝒫 𝐽 ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ) |
| 55 | 2 54 | sylbi | ⊢ ( 𝐽 ∈ 2ndω → ( 𝑥 ∈ ∪ 𝐽 → ∃ 𝑠 ∈ 𝒫 𝐽 ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ) |
| 56 | 55 | ralrimiv | ⊢ ( 𝐽 ∈ 2ndω → ∀ 𝑥 ∈ ∪ 𝐽 ∃ 𝑠 ∈ 𝒫 𝐽 ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) |
| 57 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 58 | 57 | is1stc2 | ⊢ ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ∪ 𝐽 ∃ 𝑠 ∈ 𝒫 𝐽 ( 𝑠 ≼ ω ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∃ 𝑝 ∈ 𝑠 ( 𝑥 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑜 ) ) ) ) ) |
| 59 | 1 56 58 | sylanbrc | ⊢ ( 𝐽 ∈ 2ndω → 𝐽 ∈ 1stω ) |