This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent way of saying "is a first-countable topology." (Contributed by Jeff Hankins, 22-Aug-2009) (Revised by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | is1stc.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | is1stc2 | ⊢ ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is1stc.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | is1stc | ⊢ ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ) ) |
| 3 | elin | ⊢ ( 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝒫 𝑧 ) ) | |
| 4 | velpw | ⊢ ( 𝑤 ∈ 𝒫 𝑧 ↔ 𝑤 ⊆ 𝑧 ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝒫 𝑧 ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧 ) ) |
| 6 | 3 5 | bitri | ⊢ ( 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧 ) ) |
| 7 | 6 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑤 ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 8 | an12 | ⊢ ( ( 𝑥 ∈ 𝑤 ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 𝑤 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) | |
| 9 | 7 8 | bitri | ⊢ ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ( 𝑤 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 11 | eluni | ⊢ ( 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) | |
| 12 | df-rex | ⊢ ( ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) | |
| 13 | 10 11 12 | 3bitr4i | ⊢ ( 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
| 14 | 13 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 15 | 14 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 16 | 15 | anbi2i | ⊢ ( ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ↔ ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 17 | 16 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ↔ ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 18 | 17 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 19 | 18 | anbi2i | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ) ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 20 | 2 19 | bitri | ⊢ ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |