This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 1stcrest . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1stcrestlem | ⊢ ( 𝐵 ≼ ω → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom | ⊢ Ord ω | |
| 2 | reldom | ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i | ⊢ ( 𝐵 ≼ ω → ω ∈ V ) |
| 4 | elong | ⊢ ( ω ∈ V → ( ω ∈ On ↔ Ord ω ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐵 ≼ ω → ( ω ∈ On ↔ Ord ω ) ) |
| 6 | 1 5 | mpbiri | ⊢ ( 𝐵 ≼ ω → ω ∈ On ) |
| 7 | ondomen | ⊢ ( ( ω ∈ On ∧ 𝐵 ≼ ω ) → 𝐵 ∈ dom card ) | |
| 8 | 6 7 | mpancom | ⊢ ( 𝐵 ≼ ω → 𝐵 ∈ dom card ) |
| 9 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) | |
| 10 | 9 | dmmptss | ⊢ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⊆ 𝐵 |
| 11 | ssnum | ⊢ ( ( 𝐵 ∈ dom card ∧ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⊆ 𝐵 ) → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ dom card ) | |
| 12 | 8 10 11 | sylancl | ⊢ ( 𝐵 ≼ ω → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ dom card ) |
| 13 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) | |
| 14 | funforn | ⊢ ( Fun ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) –onto→ ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) | |
| 15 | 13 14 | mpbi | ⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) –onto→ ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
| 16 | fodomnum | ⊢ ( dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ dom card → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) –onto→ ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) ) | |
| 17 | 12 15 16 | mpisyl | ⊢ ( 𝐵 ≼ ω → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
| 18 | ctex | ⊢ ( 𝐵 ≼ ω → 𝐵 ∈ V ) | |
| 19 | ssdomg | ⊢ ( 𝐵 ∈ V → ( dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⊆ 𝐵 → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ 𝐵 ) ) | |
| 20 | 18 10 19 | mpisyl | ⊢ ( 𝐵 ≼ ω → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ 𝐵 ) |
| 21 | domtr | ⊢ ( ( dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ 𝐵 ∧ 𝐵 ≼ ω ) → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) | |
| 22 | 20 21 | mpancom | ⊢ ( 𝐵 ≼ ω → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) |
| 23 | domtr | ⊢ ( ( ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∧ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) | |
| 24 | 17 22 23 | syl2anc | ⊢ ( 𝐵 ≼ ω → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) |