This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014) (Revised by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltg2b | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltg2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) ) | |
| 2 | simpl | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → 𝑥 ∈ 𝑦 ) | |
| 3 | 2 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) |
| 4 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) | |
| 5 | 3 4 | sylibr | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → 𝑥 ∈ ∪ 𝐵 ) |
| 6 | 5 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵 ) |
| 7 | dfss3 | ⊢ ( 𝐴 ⊆ ∪ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵 ) | |
| 8 | 6 7 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → 𝐴 ⊆ ∪ 𝐵 ) |
| 9 | 8 | pm4.71ri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) |
| 10 | 1 9 | bitr4di | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) |