This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idlcpblrng.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 2idlcpblrng.r | ⊢ 𝐸 = ( 𝑅 ~QG 𝑆 ) | ||
| 2idlcpblrng.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | ||
| 2idlcpblrng.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | 2idlcpblrng | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlcpblrng.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 2 | 2idlcpblrng.r | ⊢ 𝐸 = ( 𝑅 ~QG 𝑆 ) | |
| 3 | 2idlcpblrng.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | |
| 4 | 2idlcpblrng.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑅 ∈ Rng ) | |
| 6 | simpl3 | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 7 | 1 2 | eqger | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → 𝐸 Er 𝑋 ) |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐸 Er 𝑋 ) |
| 9 | simprl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐴 𝐸 𝐶 ) | |
| 10 | 8 9 | ersym | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐶 𝐸 𝐴 ) |
| 11 | rngabl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) | |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Abel ) |
| 13 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 14 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 15 | eqid | ⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | |
| 16 | 13 14 15 3 | 2idlelb | ⊢ ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 17 | 16 | simplbi | ⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 20 | 1 13 | lidlss | ⊢ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) → 𝑆 ⊆ 𝑋 ) |
| 21 | 19 20 | syl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ⊆ 𝑋 ) |
| 22 | eqid | ⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) | |
| 23 | 1 22 2 | eqgabl | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐶 𝐸 𝐴 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) ) |
| 24 | 12 21 23 | syl2an2r | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 𝐸 𝐴 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) ) |
| 25 | 10 24 | mpbid | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) |
| 26 | 25 | simp2d | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐴 ∈ 𝑋 ) |
| 27 | simprr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐵 𝐸 𝐷 ) | |
| 28 | 1 22 2 | eqgabl | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐵 𝐸 𝐷 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) ) |
| 29 | 12 21 28 | syl2an2r | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 𝐸 𝐷 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) ) |
| 30 | 27 29 | mpbid | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) |
| 31 | 30 | simp1d | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐵 ∈ 𝑋 ) |
| 32 | 1 4 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 · 𝐵 ) ∈ 𝑋 ) |
| 33 | 5 26 31 32 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐴 · 𝐵 ) ∈ 𝑋 ) |
| 34 | 25 | simp1d | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐶 ∈ 𝑋 ) |
| 35 | 30 | simp2d | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐷 ∈ 𝑋 ) |
| 36 | 1 4 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( 𝐶 · 𝐷 ) ∈ 𝑋 ) |
| 37 | 5 34 35 36 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · 𝐷 ) ∈ 𝑋 ) |
| 38 | rnggrp | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) | |
| 39 | 38 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑅 ∈ Grp ) |
| 41 | 1 4 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐶 · 𝐵 ) ∈ 𝑋 ) |
| 42 | 5 34 31 41 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · 𝐵 ) ∈ 𝑋 ) |
| 43 | 1 22 | grpnnncan2 | ⊢ ( ( 𝑅 ∈ Grp ∧ ( ( 𝐶 · 𝐷 ) ∈ 𝑋 ∧ ( 𝐴 · 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 · 𝐵 ) ∈ 𝑋 ) ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) = ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ) |
| 44 | 40 37 33 42 43 | syl13anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) = ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ) |
| 45 | 1 4 22 5 34 35 31 | rngsubdi | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ) = ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) |
| 46 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 47 | 46 | subg0cl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
| 48 | 47 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
| 49 | 48 | adantr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
| 50 | 30 | simp3d | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) |
| 51 | 46 1 4 13 | rnglidlmcl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) → ( 𝐶 · ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ) ∈ 𝑆 ) |
| 52 | 5 19 49 34 50 51 | syl32anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ) ∈ 𝑆 ) |
| 53 | 45 52 | eqeltrrd | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ) |
| 54 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 55 | 1 4 14 54 | opprmul | ⊢ ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) = ( ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) · 𝐵 ) |
| 56 | 1 4 22 5 26 34 31 | rngsubdir | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) |
| 57 | 55 56 | eqtrid | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) |
| 58 | 14 | opprrng | ⊢ ( 𝑅 ∈ Rng → ( oppr ‘ 𝑅 ) ∈ Rng ) |
| 59 | 58 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( oppr ‘ 𝑅 ) ∈ Rng ) |
| 60 | 59 | adantr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( oppr ‘ 𝑅 ) ∈ Rng ) |
| 61 | 16 | simprbi | ⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 62 | 61 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 64 | 25 | simp3d | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) |
| 65 | 14 46 | oppr0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
| 66 | 14 1 | opprbas | ⊢ 𝑋 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 67 | 65 66 54 15 | rnglidlmcl | ⊢ ( ( ( ( oppr ‘ 𝑅 ) ∈ Rng ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑆 ) ∧ ( 𝐵 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) → ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) ∈ 𝑆 ) |
| 68 | 60 63 49 31 64 67 | syl32anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) ∈ 𝑆 ) |
| 69 | 57 68 | eqeltrrd | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ) |
| 70 | 22 | subgsubcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ∧ ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) ∈ 𝑆 ) |
| 71 | 6 53 69 70 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) ∈ 𝑆 ) |
| 72 | 44 71 | eqeltrrd | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ∈ 𝑆 ) |
| 73 | 1 22 2 | eqgabl | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ↔ ( ( 𝐴 · 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 · 𝐷 ) ∈ 𝑋 ∧ ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ∈ 𝑆 ) ) ) |
| 74 | 12 21 73 | syl2an2r | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ↔ ( ( 𝐴 · 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 · 𝐷 ) ∈ 𝑋 ∧ ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ∈ 𝑆 ) ) ) |
| 75 | 33 37 72 74 | mpbir3and | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) |
| 76 | 75 | ex | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) ) |