This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprbas.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| Assertion | opprrng | ⊢ ( 𝑅 ∈ Rng → 𝑂 ∈ Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | 1 2 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 4 | 3 | a1i | ⊢ ( 𝑅 ∈ Rng → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) ) |
| 5 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 6 | 1 5 | oppradd | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
| 7 | 6 | a1i | ⊢ ( 𝑅 ∈ Rng → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) ) |
| 8 | eqidd | ⊢ ( 𝑅 ∈ Rng → ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) ) | |
| 9 | rngabl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) | |
| 10 | 3 6 | ablprop | ⊢ ( 𝑅 ∈ Abel ↔ 𝑂 ∈ Abel ) |
| 11 | 9 10 | sylib | ⊢ ( 𝑅 ∈ Rng → 𝑂 ∈ Abel ) |
| 12 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) | |
| 14 | 2 12 1 13 | opprmul | ⊢ ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) |
| 15 | 2 12 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 16 | 15 | 3com23 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 14 16 | eqeltrid | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 18 | simpl | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Rng ) | |
| 19 | simpr3 | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) | |
| 20 | simpr2 | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) | |
| 21 | simpr1 | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 22 | 2 12 | rngass | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 23 | 18 19 20 21 22 | syl13anc | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 24 | 23 | eqcomd | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 25 | 14 | oveq1i | ⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑂 ) 𝑧 ) |
| 26 | 2 12 1 13 | opprmul | ⊢ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 27 | 25 26 | eqtri | ⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 28 | 2 12 1 13 | opprmul | ⊢ ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) |
| 29 | 28 | oveq2i | ⊢ ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 30 | 2 12 1 13 | opprmul | ⊢ ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑥 ) |
| 31 | 29 30 | eqtri | ⊢ ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑥 ) |
| 32 | 24 27 31 | 3eqtr4g | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ) ) |
| 33 | 2 5 12 | rngdir | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 34 | 18 20 19 21 33 | syl13anc | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 35 | 2 12 1 13 | opprmul | ⊢ ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ( .r ‘ 𝑅 ) 𝑥 ) |
| 36 | 2 12 1 13 | opprmul | ⊢ ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) |
| 37 | 14 36 | oveq12i | ⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 38 | 34 35 37 | 3eqtr4g | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) ) ) |
| 39 | 2 5 12 | rngdi | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 40 | 18 19 21 20 39 | syl13anc | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 41 | 2 12 1 13 | opprmul | ⊢ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 42 | 36 28 | oveq12i | ⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 43 | 40 41 42 | 3eqtr4g | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ) ) |
| 44 | 4 7 8 11 17 32 38 43 | isrngd | ⊢ ( 𝑅 ∈ Rng → 𝑂 ∈ Rng ) |