This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015) (Proof shortened by AV, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idlcpblrng.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 2idlcpblrng.r | ⊢ 𝐸 = ( 𝑅 ~QG 𝑆 ) | ||
| 2idlcpblrng.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | ||
| 2idlcpblrng.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | 2idlcpbl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlcpblrng.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 2 | 2idlcpblrng.r | ⊢ 𝐸 = ( 𝑅 ~QG 𝑆 ) | |
| 3 | 2idlcpblrng.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | |
| 4 | 2idlcpblrng.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Rng ) |
| 7 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ 𝐼 ) | |
| 8 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 10 | eqid | ⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | |
| 11 | 8 9 10 3 | 2idlelb | ⊢ ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 12 | 11 | simplbi | ⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 13 | 8 | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 14 | 12 13 | sylan2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 15 | 1 2 3 4 | 2idlcpblrng | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) ) |
| 16 | 6 7 14 15 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) ) |