This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring multiplication distributes over subtraction. ( subdir analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014) Generalization of ringsubdir . (Revised by AV, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngsubdi.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rngsubdi.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rngsubdi.m | ⊢ − = ( -g ‘ 𝑅 ) | ||
| rngsubdi.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | ||
| rngsubdi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| rngsubdi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| rngsubdi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | rngsubdir | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) − ( 𝑌 · 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngsubdi.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rngsubdi.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | rngsubdi.m | ⊢ − = ( -g ‘ 𝑅 ) | |
| 4 | rngsubdi.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
| 5 | rngsubdi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | rngsubdi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | rngsubdi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 9 | rnggrp | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 11 | 1 8 10 6 | grpinvcld | ⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 12 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 13 | 1 12 2 | rngdir | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) · 𝑍 ) ) ) |
| 14 | 4 5 11 7 13 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) · 𝑍 ) ) ) |
| 15 | 1 2 8 4 6 7 | rngmneg1 | ⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) · 𝑍 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) · 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) ) |
| 17 | 14 16 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) ) |
| 18 | 1 12 8 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 19 | 5 6 18 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) · 𝑍 ) = ( ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) ) |
| 21 | 1 2 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 22 | 4 5 7 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 23 | 1 2 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 · 𝑍 ) ∈ 𝐵 ) |
| 24 | 4 6 7 23 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 · 𝑍 ) ∈ 𝐵 ) |
| 25 | 1 12 8 3 | grpsubval | ⊢ ( ( ( 𝑋 · 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 · 𝑍 ) ∈ 𝐵 ) → ( ( 𝑋 · 𝑍 ) − ( 𝑌 · 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) ) |
| 26 | 22 24 25 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) − ( 𝑌 · 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) ) |
| 27 | 17 20 26 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) − ( 𝑌 · 𝑍 ) ) ) |