This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rngcl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rngcl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 4 | 3 | rngmgp | ⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
| 5 | sgrpmgm | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp → ( mulGrp ‘ 𝑅 ) ∈ Mgm ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Mgm ) |
| 7 | 3 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 8 | 3 2 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 9 | 7 8 | mgmcl | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 10 | 6 9 | syl3an1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |