This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven as in lidlmcl . (Contributed by AV, 18-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidlmcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| rnglidlmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| rnglidlmcl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rnglidlmcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
| Assertion | rnglidlmcl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidlmcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 2 | rnglidlmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | rnglidlmcl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | rnglidlmcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 6 | 4 2 5 3 | islidl | ⊢ ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
| 7 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑎 ) = ( 𝑋 · 𝑎 ) ) | |
| 8 | 7 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ↔ ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ↔ ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
| 11 | oveq2 | ⊢ ( 𝑎 = 𝑌 → ( 𝑋 · 𝑎 ) = ( 𝑋 · 𝑌 ) ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝑎 = 𝑌 → ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 13 | 12 | eleq1d | ⊢ ( 𝑎 = 𝑌 → ( ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ↔ ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
| 14 | 13 | ralbidv | ⊢ ( 𝑎 = 𝑌 → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ↔ ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
| 15 | 10 14 | rspc2v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
| 16 | 15 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
| 17 | oveq2 | ⊢ ( 𝑏 = 0 → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑏 = 0 → ( ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ↔ ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 ) ) |
| 19 | 18 | rspcv | ⊢ ( 0 ∈ 𝐼 → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 ) ) |
| 20 | 19 | adantl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 ) ) |
| 21 | rnggrp | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) | |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) → 𝑅 ∈ Grp ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → 𝑅 ∈ Grp ) |
| 24 | 23 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑅 ∈ Grp ) |
| 25 | simpll1 | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑅 ∈ Rng ) | |
| 26 | simprl | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑋 ∈ 𝐵 ) | |
| 27 | ssel | ⊢ ( 𝐼 ⊆ 𝐵 → ( 𝑌 ∈ 𝐼 → 𝑌 ∈ 𝐵 ) ) | |
| 28 | 27 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑌 ∈ 𝐼 → 𝑌 ∈ 𝐵 ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( 𝑌 ∈ 𝐼 → 𝑌 ∈ 𝐵 ) ) |
| 30 | 29 | adantld | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → 𝑌 ∈ 𝐵 ) ) |
| 31 | 30 | imp | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑌 ∈ 𝐵 ) |
| 32 | 2 3 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 33 | 25 26 31 32 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 34 | 2 5 1 24 33 | grpridd | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) = ( 𝑋 · 𝑌 ) ) |
| 35 | 34 | eleq1d | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 ↔ ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) |
| 36 | 35 | biimpd | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) |
| 37 | 36 | ex | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) |
| 38 | 20 37 | syl5d | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) |
| 39 | 38 | imp | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) |
| 40 | 16 39 | syld | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) |
| 41 | 40 | ex | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) |
| 42 | 41 | com23 | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) |
| 43 | 42 | ex | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 0 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) ) |
| 44 | 43 | com23 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 0 ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) ) |
| 45 | 44 | 3exp | ⊢ ( 𝑅 ∈ Rng → ( 𝐼 ⊆ 𝐵 → ( 𝐼 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 0 ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) ) ) ) |
| 46 | 45 | 3impd | ⊢ ( 𝑅 ∈ Rng → ( ( 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) → ( 0 ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) ) |
| 47 | 6 46 | biimtrid | ⊢ ( 𝑅 ∈ Rng → ( 𝐼 ∈ 𝑈 → ( 0 ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) ) |
| 48 | 47 | 3imp1 | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |