This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group subtraction. ( nnncan2 analog.) (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpnnncan2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpnnncan2.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpnnncan2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) − ( 𝑌 − 𝑍 ) ) = ( 𝑋 − 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpnnncan2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpnnncan2.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 4 | simpr1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 5 | simpr3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 6 | 1 2 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
| 7 | 6 | 3adant3r1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
| 8 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 9 | 1 8 2 | grpsubsub4 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ( 𝑌 − 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) − ( 𝑌 − 𝑍 ) ) = ( 𝑋 − ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) ) ) |
| 10 | 3 4 5 7 9 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) − ( 𝑌 − 𝑍 ) ) = ( 𝑋 − ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) ) ) |
| 11 | 1 8 2 | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) = 𝑌 ) |
| 12 | 11 | 3adant3r1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) = 𝑌 ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) ) = ( 𝑋 − 𝑌 ) ) |
| 14 | 10 13 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) − ( 𝑌 − 𝑍 ) ) = ( 𝑋 − 𝑌 ) ) |