This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idlcpblrng.x | |- X = ( Base ` R ) |
|
| 2idlcpblrng.r | |- E = ( R ~QG S ) |
||
| 2idlcpblrng.i | |- I = ( 2Ideal ` R ) |
||
| 2idlcpblrng.t | |- .x. = ( .r ` R ) |
||
| Assertion | 2idlcpblrng | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( A E C /\ B E D ) -> ( A .x. B ) E ( C .x. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlcpblrng.x | |- X = ( Base ` R ) |
|
| 2 | 2idlcpblrng.r | |- E = ( R ~QG S ) |
|
| 3 | 2idlcpblrng.i | |- I = ( 2Ideal ` R ) |
|
| 4 | 2idlcpblrng.t | |- .x. = ( .r ` R ) |
|
| 5 | simpl1 | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> R e. Rng ) |
|
| 6 | simpl3 | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S e. ( SubGrp ` R ) ) |
|
| 7 | 1 2 | eqger | |- ( S e. ( SubGrp ` R ) -> E Er X ) |
| 8 | 6 7 | syl | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> E Er X ) |
| 9 | simprl | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> A E C ) |
|
| 10 | 8 9 | ersym | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> C E A ) |
| 11 | rngabl | |- ( R e. Rng -> R e. Abel ) |
|
| 12 | 11 | 3ad2ant1 | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Abel ) |
| 13 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 14 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 15 | eqid | |- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
|
| 16 | 13 14 15 3 | 2idlelb | |- ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 17 | 16 | simplbi | |- ( S e. I -> S e. ( LIdeal ` R ) ) |
| 18 | 17 | 3ad2ant2 | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( LIdeal ` R ) ) |
| 19 | 18 | adantr | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S e. ( LIdeal ` R ) ) |
| 20 | 1 13 | lidlss | |- ( S e. ( LIdeal ` R ) -> S C_ X ) |
| 21 | 19 20 | syl | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S C_ X ) |
| 22 | eqid | |- ( -g ` R ) = ( -g ` R ) |
|
| 23 | 1 22 2 | eqgabl | |- ( ( R e. Abel /\ S C_ X ) -> ( C E A <-> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) ) |
| 24 | 12 21 23 | syl2an2r | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C E A <-> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) ) |
| 25 | 10 24 | mpbid | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) |
| 26 | 25 | simp2d | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> A e. X ) |
| 27 | simprr | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> B E D ) |
|
| 28 | 1 22 2 | eqgabl | |- ( ( R e. Abel /\ S C_ X ) -> ( B E D <-> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) ) |
| 29 | 12 21 28 | syl2an2r | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B E D <-> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) ) |
| 30 | 27 29 | mpbid | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) |
| 31 | 30 | simp1d | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> B e. X ) |
| 32 | 1 4 | rngcl | |- ( ( R e. Rng /\ A e. X /\ B e. X ) -> ( A .x. B ) e. X ) |
| 33 | 5 26 31 32 | syl3anc | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( A .x. B ) e. X ) |
| 34 | 25 | simp1d | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> C e. X ) |
| 35 | 30 | simp2d | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> D e. X ) |
| 36 | 1 4 | rngcl | |- ( ( R e. Rng /\ C e. X /\ D e. X ) -> ( C .x. D ) e. X ) |
| 37 | 5 34 35 36 | syl3anc | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. D ) e. X ) |
| 38 | rnggrp | |- ( R e. Rng -> R e. Grp ) |
|
| 39 | 38 | 3ad2ant1 | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Grp ) |
| 40 | 39 | adantr | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> R e. Grp ) |
| 41 | 1 4 | rngcl | |- ( ( R e. Rng /\ C e. X /\ B e. X ) -> ( C .x. B ) e. X ) |
| 42 | 5 34 31 41 | syl3anc | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. B ) e. X ) |
| 43 | 1 22 | grpnnncan2 | |- ( ( R e. Grp /\ ( ( C .x. D ) e. X /\ ( A .x. B ) e. X /\ ( C .x. B ) e. X ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) = ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) ) |
| 44 | 40 37 33 42 43 | syl13anc | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) = ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) ) |
| 45 | 1 4 22 5 34 35 31 | rngsubdi | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. ( D ( -g ` R ) B ) ) = ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ) |
| 46 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 47 | 46 | subg0cl | |- ( S e. ( SubGrp ` R ) -> ( 0g ` R ) e. S ) |
| 48 | 47 | 3ad2ant3 | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( 0g ` R ) e. S ) |
| 49 | 48 | adantr | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( 0g ` R ) e. S ) |
| 50 | 30 | simp3d | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( D ( -g ` R ) B ) e. S ) |
| 51 | 46 1 4 13 | rnglidlmcl | |- ( ( ( R e. Rng /\ S e. ( LIdeal ` R ) /\ ( 0g ` R ) e. S ) /\ ( C e. X /\ ( D ( -g ` R ) B ) e. S ) ) -> ( C .x. ( D ( -g ` R ) B ) ) e. S ) |
| 52 | 5 19 49 34 50 51 | syl32anc | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. ( D ( -g ` R ) B ) ) e. S ) |
| 53 | 45 52 | eqeltrrd | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) e. S ) |
| 54 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 55 | 1 4 14 54 | opprmul | |- ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) = ( ( A ( -g ` R ) C ) .x. B ) |
| 56 | 1 4 22 5 26 34 31 | rngsubdir | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( A ( -g ` R ) C ) .x. B ) = ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) |
| 57 | 55 56 | eqtrid | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) = ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) |
| 58 | 14 | opprrng | |- ( R e. Rng -> ( oppR ` R ) e. Rng ) |
| 59 | 58 | 3ad2ant1 | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( oppR ` R ) e. Rng ) |
| 60 | 59 | adantr | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( oppR ` R ) e. Rng ) |
| 61 | 16 | simprbi | |- ( S e. I -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
| 62 | 61 | 3ad2ant2 | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
| 63 | 62 | adantr | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
| 64 | 25 | simp3d | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( A ( -g ` R ) C ) e. S ) |
| 65 | 14 46 | oppr0 | |- ( 0g ` R ) = ( 0g ` ( oppR ` R ) ) |
| 66 | 14 1 | opprbas | |- X = ( Base ` ( oppR ` R ) ) |
| 67 | 65 66 54 15 | rnglidlmcl | |- ( ( ( ( oppR ` R ) e. Rng /\ S e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. S ) /\ ( B e. X /\ ( A ( -g ` R ) C ) e. S ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) e. S ) |
| 68 | 60 63 49 31 64 67 | syl32anc | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) e. S ) |
| 69 | 57 68 | eqeltrrd | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) e. S ) |
| 70 | 22 | subgsubcl | |- ( ( S e. ( SubGrp ` R ) /\ ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) e. S /\ ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) e. S ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) e. S ) |
| 71 | 6 53 69 70 | syl3anc | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) e. S ) |
| 72 | 44 71 | eqeltrrd | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) |
| 73 | 1 22 2 | eqgabl | |- ( ( R e. Abel /\ S C_ X ) -> ( ( A .x. B ) E ( C .x. D ) <-> ( ( A .x. B ) e. X /\ ( C .x. D ) e. X /\ ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) ) ) |
| 74 | 12 21 73 | syl2an2r | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( A .x. B ) E ( C .x. D ) <-> ( ( A .x. B ) e. X /\ ( C .x. D ) e. X /\ ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) ) ) |
| 75 | 33 37 72 74 | mpbir3and | |- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( A .x. B ) E ( C .x. D ) ) |
| 76 | 75 | ex | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( A E C /\ B E D ) -> ( A .x. B ) E ( C .x. D ) ) ) |