This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1sdom2dom | ⊢ ( 1o ≺ 𝐴 ↔ 2o ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i | ⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
| 3 | sdomdom | ⊢ ( 1o ≺ 𝐴 → 1o ≼ 𝐴 ) | |
| 4 | 0sdom1dom | ⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) | |
| 5 | 3 4 | sylibr | ⊢ ( 1o ≺ 𝐴 → ∅ ≺ 𝐴 ) |
| 6 | 0sdomg | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 7 | 2 6 | syl | ⊢ ( 1o ≺ 𝐴 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 8 | 5 7 | mpbid | ⊢ ( 1o ≺ 𝐴 → 𝐴 ≠ ∅ ) |
| 9 | n0snor2el | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑥 𝐴 = { 𝑥 } ) ) | |
| 10 | 8 9 | syl | ⊢ ( 1o ≺ 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
| 11 | sdomnen | ⊢ ( 1o ≺ 𝐴 → ¬ 1o ≈ 𝐴 ) | |
| 12 | df1o2 | ⊢ 1o = { ∅ } | |
| 13 | 0ex | ⊢ ∅ ∈ V | |
| 14 | vex | ⊢ 𝑥 ∈ V | |
| 15 | en2sn | ⊢ ( ( ∅ ∈ V ∧ 𝑥 ∈ V ) → { ∅ } ≈ { 𝑥 } ) | |
| 16 | 13 14 15 | mp2an | ⊢ { ∅ } ≈ { 𝑥 } |
| 17 | 12 16 | eqbrtri | ⊢ 1o ≈ { 𝑥 } |
| 18 | breq2 | ⊢ ( 𝐴 = { 𝑥 } → ( 1o ≈ 𝐴 ↔ 1o ≈ { 𝑥 } ) ) | |
| 19 | 17 18 | mpbiri | ⊢ ( 𝐴 = { 𝑥 } → 1o ≈ 𝐴 ) |
| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑥 𝐴 = { 𝑥 } → 1o ≈ 𝐴 ) |
| 21 | 11 20 | nsyl | ⊢ ( 1o ≺ 𝐴 → ¬ ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 22 | 10 21 | olcnd | ⊢ ( 1o ≺ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) |
| 23 | rex2dom | ⊢ ( ( 𝐴 ∈ V ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) → 2o ≼ 𝐴 ) | |
| 24 | 2 22 23 | syl2anc | ⊢ ( 1o ≺ 𝐴 → 2o ≼ 𝐴 ) |
| 25 | snsspr1 | ⊢ { ∅ } ⊆ { ∅ , 1o } | |
| 26 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 27 | 25 12 26 | 3sstr4i | ⊢ 1o ⊆ 2o |
| 28 | domssl | ⊢ ( ( 1o ⊆ 2o ∧ 2o ≼ 𝐴 ) → 1o ≼ 𝐴 ) | |
| 29 | 27 28 | mpan | ⊢ ( 2o ≼ 𝐴 → 1o ≼ 𝐴 ) |
| 30 | snnen2o | ⊢ ¬ { 𝑦 } ≈ 2o | |
| 31 | 13 | a1i | ⊢ ( ⊤ → ∅ ∈ V ) |
| 32 | 1oex | ⊢ 1o ∈ V | |
| 33 | 32 | a1i | ⊢ ( ⊤ → 1o ∈ V ) |
| 34 | 1n0 | ⊢ 1o ≠ ∅ | |
| 35 | 34 | nesymi | ⊢ ¬ ∅ = 1o |
| 36 | 35 | a1i | ⊢ ( ⊤ → ¬ ∅ = 1o ) |
| 37 | 31 33 36 | enpr2d | ⊢ ( ⊤ → { ∅ , 1o } ≈ 2o ) |
| 38 | 37 | mptru | ⊢ { ∅ , 1o } ≈ 2o |
| 39 | 26 38 | eqbrtri | ⊢ 2o ≈ 2o |
| 40 | breq1 | ⊢ ( 2o = { 𝑦 } → ( 2o ≈ 2o ↔ { 𝑦 } ≈ 2o ) ) | |
| 41 | 39 40 | mpbii | ⊢ ( 2o = { 𝑦 } → { 𝑦 } ≈ 2o ) |
| 42 | 30 41 | mto | ⊢ ¬ 2o = { 𝑦 } |
| 43 | 42 | nex | ⊢ ¬ ∃ 𝑦 2o = { 𝑦 } |
| 44 | 2on0 | ⊢ 2o ≠ ∅ | |
| 45 | f1cdmsn | ⊢ ( ( 𝑓 : 2o –1-1→ { 𝑥 } ∧ 2o ≠ ∅ ) → ∃ 𝑦 2o = { 𝑦 } ) | |
| 46 | 44 45 | mpan2 | ⊢ ( 𝑓 : 2o –1-1→ { 𝑥 } → ∃ 𝑦 2o = { 𝑦 } ) |
| 47 | 43 46 | mto | ⊢ ¬ 𝑓 : 2o –1-1→ { 𝑥 } |
| 48 | 47 | nex | ⊢ ¬ ∃ 𝑓 𝑓 : 2o –1-1→ { 𝑥 } |
| 49 | brdomi | ⊢ ( 2o ≼ { 𝑥 } → ∃ 𝑓 𝑓 : 2o –1-1→ { 𝑥 } ) | |
| 50 | 48 49 | mto | ⊢ ¬ 2o ≼ { 𝑥 } |
| 51 | breq2 | ⊢ ( 𝐴 = { 𝑥 } → ( 2o ≼ 𝐴 ↔ 2o ≼ { 𝑥 } ) ) | |
| 52 | 50 51 | mtbiri | ⊢ ( 𝐴 = { 𝑥 } → ¬ 2o ≼ 𝐴 ) |
| 53 | 52 | con2i | ⊢ ( 2o ≼ 𝐴 → ¬ 𝐴 = { 𝑥 } ) |
| 54 | 53 | nexdv | ⊢ ( 2o ≼ 𝐴 → ¬ ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 55 | reldom | ⊢ Rel ≼ | |
| 56 | 55 | brrelex2i | ⊢ ( 2o ≼ 𝐴 → 𝐴 ∈ V ) |
| 57 | breng | ⊢ ( ( 1o ∈ V ∧ 𝐴 ∈ V ) → ( 1o ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 ) ) | |
| 58 | 32 57 | mpan | ⊢ ( 𝐴 ∈ V → ( 1o ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 ) ) |
| 59 | 56 58 | syl | ⊢ ( 2o ≼ 𝐴 → ( 1o ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 ) ) |
| 60 | 29 4 | sylibr | ⊢ ( 2o ≼ 𝐴 → ∅ ≺ 𝐴 ) |
| 61 | 56 6 | syl | ⊢ ( 2o ≼ 𝐴 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 62 | 60 61 | mpbid | ⊢ ( 2o ≼ 𝐴 → 𝐴 ≠ ∅ ) |
| 63 | f1ocnv | ⊢ ( 𝑓 : 1o –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐴 –1-1-onto→ 1o ) | |
| 64 | f1of1 | ⊢ ( ◡ 𝑓 : 𝐴 –1-1-onto→ 1o → ◡ 𝑓 : 𝐴 –1-1→ 1o ) | |
| 65 | f1eq3 | ⊢ ( 1o = { ∅ } → ( ◡ 𝑓 : 𝐴 –1-1→ 1o ↔ ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) ) | |
| 66 | 12 65 | ax-mp | ⊢ ( ◡ 𝑓 : 𝐴 –1-1→ 1o ↔ ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) |
| 67 | 64 66 | sylib | ⊢ ( ◡ 𝑓 : 𝐴 –1-1-onto→ 1o → ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) |
| 68 | 63 67 | syl | ⊢ ( 𝑓 : 1o –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) |
| 69 | f1cdmsn | ⊢ ( ( ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 𝐴 = { 𝑥 } ) | |
| 70 | 68 69 | sylan | ⊢ ( ( 𝑓 : 1o –1-1-onto→ 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 71 | 70 | expcom | ⊢ ( 𝐴 ≠ ∅ → ( 𝑓 : 1o –1-1-onto→ 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
| 72 | 71 | exlimdv | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
| 73 | 62 72 | syl | ⊢ ( 2o ≼ 𝐴 → ( ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
| 74 | 59 73 | sylbid | ⊢ ( 2o ≼ 𝐴 → ( 1o ≈ 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
| 75 | 54 74 | mtod | ⊢ ( 2o ≼ 𝐴 → ¬ 1o ≈ 𝐴 ) |
| 76 | brsdom | ⊢ ( 1o ≺ 𝐴 ↔ ( 1o ≼ 𝐴 ∧ ¬ 1o ≈ 𝐴 ) ) | |
| 77 | 29 75 76 | sylanbrc | ⊢ ( 2o ≼ 𝐴 → 1o ≺ 𝐴 ) |
| 78 | 24 77 | impbii | ⊢ ( 1o ≺ 𝐴 ↔ 2o ≼ 𝐴 ) |