This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a subset of B and C dominates B , then C also dominates A . (Contributed by BTernaryTau, 7-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domssl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐵 ≼ 𝐶 ) | |
| 2 | reldom | ⊢ Rel ≼ | |
| 3 | 2 | brrelex12i | ⊢ ( 𝐵 ≼ 𝐶 → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
| 4 | simpl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴 ⊆ 𝐵 ) | |
| 5 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V ) → 𝐴 ∈ V ) | |
| 6 | 5 | adantrr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴 ∈ V ) |
| 7 | simprr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐶 ∈ V ) | |
| 8 | 4 6 7 | jca32 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) ) |
| 9 | 3 8 | sylan2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) ) |
| 10 | brdomi | ⊢ ( 𝐵 ≼ 𝐶 → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐶 ) | |
| 11 | f1ssres | ⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐶 ) | |
| 12 | vex | ⊢ 𝑓 ∈ V | |
| 13 | 12 | resex | ⊢ ( 𝑓 ↾ 𝐴 ) ∈ V |
| 14 | f1dom4g | ⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ V ) ∧ ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐶 ) → 𝐴 ≼ 𝐶 ) | |
| 15 | 13 14 | mp3anl1 | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ∧ ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
| 16 | 15 | ancoms | ⊢ ( ( ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴 ≼ 𝐶 ) |
| 17 | 11 16 | sylan | ⊢ ( ( ( 𝑓 : 𝐵 –1-1→ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴 ≼ 𝐶 ) |
| 18 | 17 | expl | ⊢ ( 𝑓 : 𝐵 –1-1→ 𝐶 → ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴 ≼ 𝐶 ) ) |
| 19 | 18 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐶 → ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴 ≼ 𝐶 ) ) |
| 20 | 10 19 | syl | ⊢ ( 𝐵 ≼ 𝐶 → ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴 ≼ 𝐶 ) ) |
| 21 | 1 9 20 | sylc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) |