This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rex2dom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) → 2o ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 2 | prssi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → { 𝑥 , 𝑦 } ⊆ 𝐴 ) | |
| 3 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 4 | a1i | ⊢ ( 𝑥 ≠ 𝑦 → ∅ ∈ V ) |
| 6 | 1oex | ⊢ 1o ∈ V | |
| 7 | 6 | a1i | ⊢ ( 𝑥 ≠ 𝑦 → 1o ∈ V ) |
| 8 | vex | ⊢ 𝑥 ∈ V | |
| 9 | 8 | a1i | ⊢ ( 𝑥 ≠ 𝑦 → 𝑥 ∈ V ) |
| 10 | vex | ⊢ 𝑦 ∈ V | |
| 11 | 10 | a1i | ⊢ ( 𝑥 ≠ 𝑦 → 𝑦 ∈ V ) |
| 12 | 1n0 | ⊢ 1o ≠ ∅ | |
| 13 | 12 | necomi | ⊢ ∅ ≠ 1o |
| 14 | 13 | a1i | ⊢ ( 𝑥 ≠ 𝑦 → ∅ ≠ 1o ) |
| 15 | id | ⊢ ( 𝑥 ≠ 𝑦 → 𝑥 ≠ 𝑦 ) | |
| 16 | 5 7 9 11 14 15 | en2prd | ⊢ ( 𝑥 ≠ 𝑦 → { ∅ , 1o } ≈ { 𝑥 , 𝑦 } ) |
| 17 | 3 16 | eqbrtrid | ⊢ ( 𝑥 ≠ 𝑦 → 2o ≈ { 𝑥 , 𝑦 } ) |
| 18 | endom | ⊢ ( 2o ≈ { 𝑥 , 𝑦 } → 2o ≼ { 𝑥 , 𝑦 } ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑥 ≠ 𝑦 → 2o ≼ { 𝑥 , 𝑦 } ) |
| 20 | domssr | ⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ∧ 2o ≼ { 𝑥 , 𝑦 } ) → 2o ≼ 𝐴 ) | |
| 21 | 20 | 3expib | ⊢ ( 𝐴 ∈ V → ( ( { 𝑥 , 𝑦 } ⊆ 𝐴 ∧ 2o ≼ { 𝑥 , 𝑦 } ) → 2o ≼ 𝐴 ) ) |
| 22 | 2 19 21 | syl2ani | ⊢ ( 𝐴 ∈ V → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → 2o ≼ 𝐴 ) ) |
| 23 | 22 | expd | ⊢ ( 𝐴 ∈ V → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑦 → 2o ≼ 𝐴 ) ) ) |
| 24 | 23 | rexlimdvv | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴 ) ) |
| 25 | 1 24 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴 ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) → 2o ≼ 𝐴 ) |