This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty set is either a singleton or contains at least two different elements. (Contributed by AV, 20-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0snor2el | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issn | ⊢ ( ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 → ∃ 𝑧 𝐴 = { 𝑧 } ) | |
| 2 | 1 | olcd | ⊢ ( ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) |
| 3 | 2 | a1d | ⊢ ( ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 → ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) ) |
| 4 | df-ne | ⊢ ( 𝑤 ≠ 𝑦 ↔ ¬ 𝑤 = 𝑦 ) | |
| 5 | 4 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑤 = 𝑦 ) |
| 6 | rexnal | ⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑤 = 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ) | |
| 7 | 5 6 | bitri | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ) |
| 8 | 7 | ralbii | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ∀ 𝑤 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ) |
| 9 | ralnex | ⊢ ( ∀ 𝑤 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ↔ ¬ ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ) | |
| 10 | 8 9 | bitri | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ¬ ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 ) |
| 11 | neeq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ≠ 𝑦 ↔ 𝑥 ≠ 𝑦 ) ) | |
| 12 | 11 | rexbidv | ⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) ) |
| 13 | 12 | rspccva | ⊢ ( ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) |
| 14 | 13 | reximdva0 | ⊢ ( ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) |
| 15 | 14 | orcd | ⊢ ( ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) |
| 16 | 15 | ex | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 → ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) ) |
| 17 | 10 16 | sylbir | ⊢ ( ¬ ∃ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑤 = 𝑦 → ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) ) |
| 18 | 3 17 | pm2.61i | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑧 𝐴 = { 𝑧 } ) ) |