This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1sdom2dom | |- ( 1o ~< A <-> 2o ~<_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | |- Rel ~< |
|
| 2 | 1 | brrelex2i | |- ( 1o ~< A -> A e. _V ) |
| 3 | sdomdom | |- ( 1o ~< A -> 1o ~<_ A ) |
|
| 4 | 0sdom1dom | |- ( (/) ~< A <-> 1o ~<_ A ) |
|
| 5 | 3 4 | sylibr | |- ( 1o ~< A -> (/) ~< A ) |
| 6 | 0sdomg | |- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
|
| 7 | 2 6 | syl | |- ( 1o ~< A -> ( (/) ~< A <-> A =/= (/) ) ) |
| 8 | 5 7 | mpbid | |- ( 1o ~< A -> A =/= (/) ) |
| 9 | n0snor2el | |- ( A =/= (/) -> ( E. x e. A E. y e. A x =/= y \/ E. x A = { x } ) ) |
|
| 10 | 8 9 | syl | |- ( 1o ~< A -> ( E. x e. A E. y e. A x =/= y \/ E. x A = { x } ) ) |
| 11 | sdomnen | |- ( 1o ~< A -> -. 1o ~~ A ) |
|
| 12 | df1o2 | |- 1o = { (/) } |
|
| 13 | 0ex | |- (/) e. _V |
|
| 14 | vex | |- x e. _V |
|
| 15 | en2sn | |- ( ( (/) e. _V /\ x e. _V ) -> { (/) } ~~ { x } ) |
|
| 16 | 13 14 15 | mp2an | |- { (/) } ~~ { x } |
| 17 | 12 16 | eqbrtri | |- 1o ~~ { x } |
| 18 | breq2 | |- ( A = { x } -> ( 1o ~~ A <-> 1o ~~ { x } ) ) |
|
| 19 | 17 18 | mpbiri | |- ( A = { x } -> 1o ~~ A ) |
| 20 | 19 | exlimiv | |- ( E. x A = { x } -> 1o ~~ A ) |
| 21 | 11 20 | nsyl | |- ( 1o ~< A -> -. E. x A = { x } ) |
| 22 | 10 21 | olcnd | |- ( 1o ~< A -> E. x e. A E. y e. A x =/= y ) |
| 23 | rex2dom | |- ( ( A e. _V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A ) |
|
| 24 | 2 22 23 | syl2anc | |- ( 1o ~< A -> 2o ~<_ A ) |
| 25 | snsspr1 | |- { (/) } C_ { (/) , 1o } |
|
| 26 | df2o3 | |- 2o = { (/) , 1o } |
|
| 27 | 25 12 26 | 3sstr4i | |- 1o C_ 2o |
| 28 | domssl | |- ( ( 1o C_ 2o /\ 2o ~<_ A ) -> 1o ~<_ A ) |
|
| 29 | 27 28 | mpan | |- ( 2o ~<_ A -> 1o ~<_ A ) |
| 30 | snnen2o | |- -. { y } ~~ 2o |
|
| 31 | 13 | a1i | |- ( T. -> (/) e. _V ) |
| 32 | 1oex | |- 1o e. _V |
|
| 33 | 32 | a1i | |- ( T. -> 1o e. _V ) |
| 34 | 1n0 | |- 1o =/= (/) |
|
| 35 | 34 | nesymi | |- -. (/) = 1o |
| 36 | 35 | a1i | |- ( T. -> -. (/) = 1o ) |
| 37 | 31 33 36 | enpr2d | |- ( T. -> { (/) , 1o } ~~ 2o ) |
| 38 | 37 | mptru | |- { (/) , 1o } ~~ 2o |
| 39 | 26 38 | eqbrtri | |- 2o ~~ 2o |
| 40 | breq1 | |- ( 2o = { y } -> ( 2o ~~ 2o <-> { y } ~~ 2o ) ) |
|
| 41 | 39 40 | mpbii | |- ( 2o = { y } -> { y } ~~ 2o ) |
| 42 | 30 41 | mto | |- -. 2o = { y } |
| 43 | 42 | nex | |- -. E. y 2o = { y } |
| 44 | 2on0 | |- 2o =/= (/) |
|
| 45 | f1cdmsn | |- ( ( f : 2o -1-1-> { x } /\ 2o =/= (/) ) -> E. y 2o = { y } ) |
|
| 46 | 44 45 | mpan2 | |- ( f : 2o -1-1-> { x } -> E. y 2o = { y } ) |
| 47 | 43 46 | mto | |- -. f : 2o -1-1-> { x } |
| 48 | 47 | nex | |- -. E. f f : 2o -1-1-> { x } |
| 49 | brdomi | |- ( 2o ~<_ { x } -> E. f f : 2o -1-1-> { x } ) |
|
| 50 | 48 49 | mto | |- -. 2o ~<_ { x } |
| 51 | breq2 | |- ( A = { x } -> ( 2o ~<_ A <-> 2o ~<_ { x } ) ) |
|
| 52 | 50 51 | mtbiri | |- ( A = { x } -> -. 2o ~<_ A ) |
| 53 | 52 | con2i | |- ( 2o ~<_ A -> -. A = { x } ) |
| 54 | 53 | nexdv | |- ( 2o ~<_ A -> -. E. x A = { x } ) |
| 55 | reldom | |- Rel ~<_ |
|
| 56 | 55 | brrelex2i | |- ( 2o ~<_ A -> A e. _V ) |
| 57 | breng | |- ( ( 1o e. _V /\ A e. _V ) -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) ) |
|
| 58 | 32 57 | mpan | |- ( A e. _V -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) ) |
| 59 | 56 58 | syl | |- ( 2o ~<_ A -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) ) |
| 60 | 29 4 | sylibr | |- ( 2o ~<_ A -> (/) ~< A ) |
| 61 | 56 6 | syl | |- ( 2o ~<_ A -> ( (/) ~< A <-> A =/= (/) ) ) |
| 62 | 60 61 | mpbid | |- ( 2o ~<_ A -> A =/= (/) ) |
| 63 | f1ocnv | |- ( f : 1o -1-1-onto-> A -> `' f : A -1-1-onto-> 1o ) |
|
| 64 | f1of1 | |- ( `' f : A -1-1-onto-> 1o -> `' f : A -1-1-> 1o ) |
|
| 65 | f1eq3 | |- ( 1o = { (/) } -> ( `' f : A -1-1-> 1o <-> `' f : A -1-1-> { (/) } ) ) |
|
| 66 | 12 65 | ax-mp | |- ( `' f : A -1-1-> 1o <-> `' f : A -1-1-> { (/) } ) |
| 67 | 64 66 | sylib | |- ( `' f : A -1-1-onto-> 1o -> `' f : A -1-1-> { (/) } ) |
| 68 | 63 67 | syl | |- ( f : 1o -1-1-onto-> A -> `' f : A -1-1-> { (/) } ) |
| 69 | f1cdmsn | |- ( ( `' f : A -1-1-> { (/) } /\ A =/= (/) ) -> E. x A = { x } ) |
|
| 70 | 68 69 | sylan | |- ( ( f : 1o -1-1-onto-> A /\ A =/= (/) ) -> E. x A = { x } ) |
| 71 | 70 | expcom | |- ( A =/= (/) -> ( f : 1o -1-1-onto-> A -> E. x A = { x } ) ) |
| 72 | 71 | exlimdv | |- ( A =/= (/) -> ( E. f f : 1o -1-1-onto-> A -> E. x A = { x } ) ) |
| 73 | 62 72 | syl | |- ( 2o ~<_ A -> ( E. f f : 1o -1-1-onto-> A -> E. x A = { x } ) ) |
| 74 | 59 73 | sylbid | |- ( 2o ~<_ A -> ( 1o ~~ A -> E. x A = { x } ) ) |
| 75 | 54 74 | mtod | |- ( 2o ~<_ A -> -. 1o ~~ A ) |
| 76 | brsdom | |- ( 1o ~< A <-> ( 1o ~<_ A /\ -. 1o ~~ A ) ) |
|
| 77 | 29 75 76 | sylanbrc | |- ( 2o ~<_ A -> 1o ~< A ) |
| 78 | 24 77 | impbii | |- ( 1o ~< A <-> 2o ~<_ A ) |