This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1cdmsn | ⊢ ( ( 𝐹 : 𝐴 –1-1→ { 𝐵 } ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 𝐴 = { 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ { 𝐵 } → 𝐹 : 𝐴 ⟶ { 𝐵 } ) | |
| 2 | fvconst | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = 𝐵 ) | |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = 𝐵 ) |
| 4 | fvconst | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = 𝐵 ) | |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = 𝐵 ) |
| 6 | 3 5 | eqtr4d | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 7 | 1 6 | syl3an1 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ { 𝐵 } ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 8 | f1veqaeq | ⊢ ( ( 𝐹 : 𝐴 –1-1→ { 𝐵 } ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) | |
| 9 | 8 | 3impb | ⊢ ( ( 𝐹 : 𝐴 –1-1→ { 𝐵 } ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 10 | 7 9 | mpd | ⊢ ( ( 𝐹 : 𝐴 –1-1→ { 𝐵 } ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑦 = 𝑧 ) |
| 11 | 10 | 3expia | ⊢ ( ( 𝐹 : 𝐴 –1-1→ { 𝐵 } ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ 𝐴 → 𝑦 = 𝑧 ) ) |
| 12 | 11 | ralrimiv | ⊢ ( ( 𝐹 : 𝐴 –1-1→ { 𝐵 } ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 𝑦 = 𝑧 ) |
| 13 | 12 | reximdva0 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ { 𝐵 } ∧ 𝐴 ≠ ∅ ) → ∃ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 𝑦 = 𝑧 ) |
| 14 | issn | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 𝑦 = 𝑧 → ∃ 𝑥 𝐴 = { 𝑥 } ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ { 𝐵 } ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 𝐴 = { 𝑥 } ) |