This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023) Avoid ax-un . (Revised by BTernaryTau, 23-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | enpr2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| enpr2d.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| enpr2d.3 | ⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) | ||
| Assertion | enpr2d | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enpr2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 2 | enpr2d.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 3 | enpr2d.3 | ⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) | |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 6 | 1oex | ⊢ 1o ∈ V | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → 1o ∈ V ) |
| 8 | 3 | neqned | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 9 | 1n0 | ⊢ 1o ≠ ∅ | |
| 10 | 9 | necomi | ⊢ ∅ ≠ 1o |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ∅ ≠ 1o ) |
| 12 | 1 2 5 7 8 11 | en2prd | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ { ∅ , 1o } ) |
| 13 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 14 | 12 13 | breqtrrdi | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o ) |