This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom .) (Contributed by Mario Carneiro, 12-Jan-2013) Avoid ax-un . (Revised by BTernaryTau, 30-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1sdom | ⊢ ( 𝐴 ∈ 𝑉 → ( 1o ≺ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sdom2dom | ⊢ ( 1o ≺ 𝐴 ↔ 2o ≼ 𝐴 ) | |
| 2 | 2dom | ⊢ ( 2o ≼ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) | |
| 3 | df-ne | ⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) | |
| 4 | 3 | 2rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
| 5 | rex2dom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) → 2o ≼ 𝐴 ) | |
| 6 | 4 5 | sylan2br | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) → 2o ≼ 𝐴 ) |
| 7 | 6 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 → 2o ≼ 𝐴 ) ) |
| 8 | 2 7 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 2o ≼ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) ) |
| 9 | 1 8 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 1o ≺ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) ) |