This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton { A } is never equinumerous with the ordinal number 2. This holds for proper singletons ( A e.V ) as well as for singletons being the empty set ( A e/ V ). (Contributed by AV, 6-Aug-2019) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snnen2o | ⊢ ¬ { 𝐴 } ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | 1oex | ⊢ 1o ∈ V | |
| 4 | 1n0 | ⊢ 1o ≠ ∅ | |
| 5 | 4 | necomi | ⊢ ∅ ≠ 1o |
| 6 | prnesn | ⊢ ( ( ∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o ) → { ∅ , 1o } ≠ { 𝑥 } ) | |
| 7 | 2 3 5 6 | mp3an | ⊢ { ∅ , 1o } ≠ { 𝑥 } |
| 8 | 1 7 | eqnetri | ⊢ 2o ≠ { 𝑥 } |
| 9 | 8 | neii | ⊢ ¬ 2o = { 𝑥 } |
| 10 | 9 | nex | ⊢ ¬ ∃ 𝑥 2o = { 𝑥 } |
| 11 | 2on0 | ⊢ 2o ≠ ∅ | |
| 12 | f1cdmsn | ⊢ ( ( ◡ 𝑓 : 2o –1-1→ { 𝐴 } ∧ 2o ≠ ∅ ) → ∃ 𝑥 2o = { 𝑥 } ) | |
| 13 | 11 12 | mpan2 | ⊢ ( ◡ 𝑓 : 2o –1-1→ { 𝐴 } → ∃ 𝑥 2o = { 𝑥 } ) |
| 14 | 10 13 | mto | ⊢ ¬ ◡ 𝑓 : 2o –1-1→ { 𝐴 } |
| 15 | f1ocnv | ⊢ ( 𝑓 : { 𝐴 } –1-1-onto→ 2o → ◡ 𝑓 : 2o –1-1-onto→ { 𝐴 } ) | |
| 16 | f1of1 | ⊢ ( ◡ 𝑓 : 2o –1-1-onto→ { 𝐴 } → ◡ 𝑓 : 2o –1-1→ { 𝐴 } ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑓 : { 𝐴 } –1-1-onto→ 2o → ◡ 𝑓 : 2o –1-1→ { 𝐴 } ) |
| 18 | 14 17 | mto | ⊢ ¬ 𝑓 : { 𝐴 } –1-1-onto→ 2o |
| 19 | 18 | nex | ⊢ ¬ ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ 2o |
| 20 | snex | ⊢ { 𝐴 } ∈ V | |
| 21 | 2oex | ⊢ 2o ∈ V | |
| 22 | breng | ⊢ ( ( { 𝐴 } ∈ V ∧ 2o ∈ V ) → ( { 𝐴 } ≈ 2o ↔ ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ 2o ) ) | |
| 23 | 20 21 22 | mp2an | ⊢ ( { 𝐴 } ≈ 2o ↔ ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ 2o ) |
| 24 | 19 23 | mtbir | ⊢ ¬ { 𝐴 } ≈ 2o |