This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmulc | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( M x. K ) || ( N x. K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 2 | zmulcl | |- ( ( M e. ZZ /\ K e. ZZ ) -> ( M x. K ) e. ZZ ) |
|
| 3 | 2 | 3adant2 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M x. K ) e. ZZ ) |
| 4 | zmulcl | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N x. K ) e. ZZ ) |
|
| 5 | 4 | 3adant1 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( N x. K ) e. ZZ ) |
| 6 | 3 5 | jca | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( M x. K ) e. ZZ /\ ( N x. K ) e. ZZ ) ) |
| 7 | 6 | 3comr | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M x. K ) e. ZZ /\ ( N x. K ) e. ZZ ) ) |
| 8 | simpr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> x e. ZZ ) |
|
| 9 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 10 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 11 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 12 | mulass | |- ( ( x e. CC /\ M e. CC /\ K e. CC ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
|
| 13 | 9 10 11 12 | syl3an | |- ( ( x e. ZZ /\ M e. ZZ /\ K e. ZZ ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 14 | 13 | 3com13 | |- ( ( K e. ZZ /\ M e. ZZ /\ x e. ZZ ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 15 | 14 | 3expa | |- ( ( ( K e. ZZ /\ M e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 16 | 15 | 3adantl3 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 17 | oveq1 | |- ( ( x x. M ) = N -> ( ( x x. M ) x. K ) = ( N x. K ) ) |
|
| 18 | 16 17 | sylan9req | |- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) /\ ( x x. M ) = N ) -> ( x x. ( M x. K ) ) = ( N x. K ) ) |
| 19 | 18 | ex | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) = N -> ( x x. ( M x. K ) ) = ( N x. K ) ) ) |
| 20 | 1 7 8 19 | dvds1lem | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( M x. K ) || ( N x. K ) ) ) |
| 21 | 20 | 3coml | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( M x. K ) || ( N x. K ) ) ) |