This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of zndvds when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zncyg.y | |- Y = ( Z/nZ ` N ) |
|
| zndvds.2 | |- L = ( ZRHom ` Y ) |
||
| zndvds0.3 | |- .0. = ( 0g ` Y ) |
||
| Assertion | zndvds0 | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) = .0. <-> N || A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zncyg.y | |- Y = ( Z/nZ ` N ) |
|
| 2 | zndvds.2 | |- L = ( ZRHom ` Y ) |
|
| 3 | zndvds0.3 | |- .0. = ( 0g ` Y ) |
|
| 4 | 0z | |- 0 e. ZZ |
|
| 5 | 1 2 | zndvds | |- ( ( N e. NN0 /\ A e. ZZ /\ 0 e. ZZ ) -> ( ( L ` A ) = ( L ` 0 ) <-> N || ( A - 0 ) ) ) |
| 6 | 4 5 | mp3an3 | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) = ( L ` 0 ) <-> N || ( A - 0 ) ) ) |
| 7 | 1 | zncrng | |- ( N e. NN0 -> Y e. CRing ) |
| 8 | 7 | adantr | |- ( ( N e. NN0 /\ A e. ZZ ) -> Y e. CRing ) |
| 9 | crngring | |- ( Y e. CRing -> Y e. Ring ) |
|
| 10 | 2 | zrhrhm | |- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
| 11 | 8 9 10 | 3syl | |- ( ( N e. NN0 /\ A e. ZZ ) -> L e. ( ZZring RingHom Y ) ) |
| 12 | rhmghm | |- ( L e. ( ZZring RingHom Y ) -> L e. ( ZZring GrpHom Y ) ) |
|
| 13 | zring0 | |- 0 = ( 0g ` ZZring ) |
|
| 14 | 13 3 | ghmid | |- ( L e. ( ZZring GrpHom Y ) -> ( L ` 0 ) = .0. ) |
| 15 | 11 12 14 | 3syl | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( L ` 0 ) = .0. ) |
| 16 | 15 | eqeq2d | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) = ( L ` 0 ) <-> ( L ` A ) = .0. ) ) |
| 17 | simpr | |- ( ( N e. NN0 /\ A e. ZZ ) -> A e. ZZ ) |
|
| 18 | 17 | zcnd | |- ( ( N e. NN0 /\ A e. ZZ ) -> A e. CC ) |
| 19 | 18 | subid1d | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( A - 0 ) = A ) |
| 20 | 19 | breq2d | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( N || ( A - 0 ) <-> N || A ) ) |
| 21 | 6 16 20 | 3bitr3d | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) = .0. <-> N || A ) ) |