This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cygzn . (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygzn.b | |- B = ( Base ` G ) |
|
| cygzn.n | |- N = if ( B e. Fin , ( # ` B ) , 0 ) |
||
| cygzn.y | |- Y = ( Z/nZ ` N ) |
||
| cygzn.m | |- .x. = ( .g ` G ) |
||
| cygzn.l | |- L = ( ZRHom ` Y ) |
||
| cygzn.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
||
| cygzn.g | |- ( ph -> G e. CycGrp ) |
||
| cygzn.x | |- ( ph -> X e. E ) |
||
| Assertion | cygznlem1 | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( L ` K ) = ( L ` M ) <-> ( K .x. X ) = ( M .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.b | |- B = ( Base ` G ) |
|
| 2 | cygzn.n | |- N = if ( B e. Fin , ( # ` B ) , 0 ) |
|
| 3 | cygzn.y | |- Y = ( Z/nZ ` N ) |
|
| 4 | cygzn.m | |- .x. = ( .g ` G ) |
|
| 5 | cygzn.l | |- L = ( ZRHom ` Y ) |
|
| 6 | cygzn.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
|
| 7 | cygzn.g | |- ( ph -> G e. CycGrp ) |
|
| 8 | cygzn.x | |- ( ph -> X e. E ) |
|
| 9 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 10 | 9 | adantl | |- ( ( ph /\ B e. Fin ) -> ( # ` B ) e. NN0 ) |
| 11 | 0nn0 | |- 0 e. NN0 |
|
| 12 | 11 | a1i | |- ( ( ph /\ -. B e. Fin ) -> 0 e. NN0 ) |
| 13 | 10 12 | ifclda | |- ( ph -> if ( B e. Fin , ( # ` B ) , 0 ) e. NN0 ) |
| 14 | 2 13 | eqeltrid | |- ( ph -> N e. NN0 ) |
| 15 | 14 | adantr | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> N e. NN0 ) |
| 16 | simprl | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> K e. ZZ ) |
|
| 17 | simprr | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> M e. ZZ ) |
|
| 18 | 3 5 | zndvds | |- ( ( N e. NN0 /\ K e. ZZ /\ M e. ZZ ) -> ( ( L ` K ) = ( L ` M ) <-> N || ( K - M ) ) ) |
| 19 | 15 16 17 18 | syl3anc | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( L ` K ) = ( L ` M ) <-> N || ( K - M ) ) ) |
| 20 | cyggrp | |- ( G e. CycGrp -> G e. Grp ) |
|
| 21 | 7 20 | syl | |- ( ph -> G e. Grp ) |
| 22 | eqid | |- ( od ` G ) = ( od ` G ) |
|
| 23 | 1 4 6 22 | cyggenod2 | |- ( ( G e. Grp /\ X e. E ) -> ( ( od ` G ) ` X ) = if ( B e. Fin , ( # ` B ) , 0 ) ) |
| 24 | 21 8 23 | syl2anc | |- ( ph -> ( ( od ` G ) ` X ) = if ( B e. Fin , ( # ` B ) , 0 ) ) |
| 25 | 24 2 | eqtr4di | |- ( ph -> ( ( od ` G ) ` X ) = N ) |
| 26 | 25 | adantr | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( od ` G ) ` X ) = N ) |
| 27 | 26 | breq1d | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( od ` G ) ` X ) || ( K - M ) <-> N || ( K - M ) ) ) |
| 28 | 21 | adantr | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> G e. Grp ) |
| 29 | 1 4 6 | iscyggen | |- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
| 30 | 29 | simplbi | |- ( X e. E -> X e. B ) |
| 31 | 8 30 | syl | |- ( ph -> X e. B ) |
| 32 | 31 | adantr | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> X e. B ) |
| 33 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 34 | 1 22 4 33 | odcong | |- ( ( G e. Grp /\ X e. B /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( od ` G ) ` X ) || ( K - M ) <-> ( K .x. X ) = ( M .x. X ) ) ) |
| 35 | 28 32 16 17 34 | syl112anc | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( od ` G ) ` X ) || ( K - M ) <-> ( K .x. X ) = ( M .x. X ) ) ) |
| 36 | 19 27 35 | 3bitr2d | |- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( L ` K ) = ( L ` M ) <-> ( K .x. X ) = ( M .x. X ) ) ) |