This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism is a surjection onto Z/nZ . (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znzrhfo.y | |- Y = ( Z/nZ ` N ) |
|
| znzrhfo.b | |- B = ( Base ` Y ) |
||
| znzrhfo.2 | |- L = ( ZRHom ` Y ) |
||
| Assertion | znzrhfo | |- ( N e. NN0 -> L : ZZ -onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znzrhfo.y | |- Y = ( Z/nZ ` N ) |
|
| 2 | znzrhfo.b | |- B = ( Base ` Y ) |
|
| 3 | znzrhfo.2 | |- L = ( ZRHom ` Y ) |
|
| 4 | eqidd | |- ( N e. NN0 -> ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
|
| 5 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 6 | 5 | a1i | |- ( N e. NN0 -> ZZ = ( Base ` ZZring ) ) |
| 7 | eqid | |- ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
|
| 8 | ovexd | |- ( N e. NN0 -> ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) e. _V ) |
|
| 9 | zringring | |- ZZring e. Ring |
|
| 10 | 9 | a1i | |- ( N e. NN0 -> ZZring e. Ring ) |
| 11 | 4 6 7 8 10 | quslem | |- ( N e. NN0 -> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
| 12 | eqid | |- ( RSpan ` ZZring ) = ( RSpan ` ZZring ) |
|
| 13 | eqid | |- ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) = ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) |
|
| 14 | 12 1 13 | znbas | |- ( N e. NN0 -> ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( Base ` Y ) ) |
| 15 | 14 2 | eqtr4di | |- ( N e. NN0 -> ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = B ) |
| 16 | foeq3 | |- ( ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = B -> ( ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) <-> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> B ) ) |
|
| 17 | 15 16 | syl | |- ( N e. NN0 -> ( ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) <-> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> B ) ) |
| 18 | 11 17 | mpbid | |- ( N e. NN0 -> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> B ) |
| 19 | 12 13 1 3 | znzrh2 | |- ( N e. NN0 -> L = ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
| 20 | foeq1 | |- ( L = ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) -> ( L : ZZ -onto-> B <-> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> B ) ) |
|
| 21 | 19 20 | syl | |- ( N e. NN0 -> ( L : ZZ -onto-> B <-> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> B ) ) |
| 22 | 18 21 | mpbird | |- ( N e. NN0 -> L : ZZ -onto-> B ) |