This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvds1 | |- ( M e. NN0 -> ( M || 1 <-> M = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( M e. NN0 /\ M || 1 ) -> M e. NN0 ) |
|
| 2 | 1nn0 | |- 1 e. NN0 |
|
| 3 | 2 | a1i | |- ( ( M e. NN0 /\ M || 1 ) -> 1 e. NN0 ) |
| 4 | simpr | |- ( ( M e. NN0 /\ M || 1 ) -> M || 1 ) |
|
| 5 | nn0z | |- ( M e. NN0 -> M e. ZZ ) |
|
| 6 | 1dvds | |- ( M e. ZZ -> 1 || M ) |
|
| 7 | 5 6 | syl | |- ( M e. NN0 -> 1 || M ) |
| 8 | 7 | adantr | |- ( ( M e. NN0 /\ M || 1 ) -> 1 || M ) |
| 9 | dvdseq | |- ( ( ( M e. NN0 /\ 1 e. NN0 ) /\ ( M || 1 /\ 1 || M ) ) -> M = 1 ) |
|
| 10 | 1 3 4 8 9 | syl22anc | |- ( ( M e. NN0 /\ M || 1 ) -> M = 1 ) |
| 11 | 10 | ex | |- ( M e. NN0 -> ( M || 1 -> M = 1 ) ) |
| 12 | id | |- ( M = 1 -> M = 1 ) |
|
| 13 | 1z | |- 1 e. ZZ |
|
| 14 | iddvds | |- ( 1 e. ZZ -> 1 || 1 ) |
|
| 15 | 13 14 | ax-mp | |- 1 || 1 |
| 16 | 12 15 | eqbrtrdi | |- ( M = 1 -> M || 1 ) |
| 17 | 11 16 | impbid1 | |- ( M e. NN0 -> ( M || 1 <-> M = 1 ) ) |