This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitrrg.e | |- E = ( RLReg ` R ) |
|
| unitrrg.u | |- U = ( Unit ` R ) |
||
| Assertion | unitrrg | |- ( R e. Ring -> U C_ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitrrg.e | |- E = ( RLReg ` R ) |
|
| 2 | unitrrg.u | |- U = ( Unit ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 3 2 | unitcl | |- ( x e. U -> x e. ( Base ` R ) ) |
| 5 | 4 | adantl | |- ( ( R e. Ring /\ x e. U ) -> x e. ( Base ` R ) ) |
| 6 | oveq2 | |- ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) ( x ( .r ` R ) y ) ) = ( ( ( invr ` R ) ` x ) ( .r ` R ) ( 0g ` R ) ) ) |
|
| 7 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 8 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 9 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 10 | 2 7 8 9 | unitlinv | |- ( ( R e. Ring /\ x e. U ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) = ( 1r ` R ) ) |
| 11 | 10 | adantr | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) = ( 1r ` R ) ) |
| 12 | 11 | oveq1d | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ( .r ` R ) y ) = ( ( 1r ` R ) ( .r ` R ) y ) ) |
| 13 | simpll | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> R e. Ring ) |
|
| 14 | 2 7 3 | ringinvcl | |- ( ( R e. Ring /\ x e. U ) -> ( ( invr ` R ) ` x ) e. ( Base ` R ) ) |
| 15 | 14 | adantr | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( invr ` R ) ` x ) e. ( Base ` R ) ) |
| 16 | 5 | adantr | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
| 17 | simpr | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> y e. ( Base ` R ) ) |
|
| 18 | 3 8 | ringass | |- ( ( R e. Ring /\ ( ( ( invr ` R ) ` x ) e. ( Base ` R ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ( .r ` R ) y ) = ( ( ( invr ` R ) ` x ) ( .r ` R ) ( x ( .r ` R ) y ) ) ) |
| 19 | 13 15 16 17 18 | syl13anc | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ( .r ` R ) y ) = ( ( ( invr ` R ) ` x ) ( .r ` R ) ( x ( .r ` R ) y ) ) ) |
| 20 | 3 8 9 | ringlidm | |- ( ( R e. Ring /\ y e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) y ) = y ) |
| 21 | 20 | adantlr | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) y ) = y ) |
| 22 | 12 19 21 | 3eqtr3d | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) ( x ( .r ` R ) y ) ) = y ) |
| 23 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 24 | 3 8 23 | ringrz | |- ( ( R e. Ring /\ ( ( invr ` R ) ` x ) e. ( Base ` R ) ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 25 | 13 15 24 | syl2anc | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 26 | 22 25 | eqeq12d | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( ( invr ` R ) ` x ) ( .r ` R ) ( x ( .r ` R ) y ) ) = ( ( ( invr ` R ) ` x ) ( .r ` R ) ( 0g ` R ) ) <-> y = ( 0g ` R ) ) ) |
| 27 | 6 26 | imbitrid | |- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> y = ( 0g ` R ) ) ) |
| 28 | 27 | ralrimiva | |- ( ( R e. Ring /\ x e. U ) -> A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> y = ( 0g ` R ) ) ) |
| 29 | 1 3 8 23 | isrrg | |- ( x e. E <-> ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> y = ( 0g ` R ) ) ) ) |
| 30 | 5 28 29 | sylanbrc | |- ( ( R e. Ring /\ x e. U ) -> x e. E ) |
| 31 | 30 | ex | |- ( R e. Ring -> ( x e. U -> x e. E ) ) |
| 32 | 31 | ssrdv | |- ( R e. Ring -> U C_ E ) |