This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgval.e | |- E = ( RLReg ` R ) |
|
| rrgval.b | |- B = ( Base ` R ) |
||
| rrgval.t | |- .x. = ( .r ` R ) |
||
| rrgval.z | |- .0. = ( 0g ` R ) |
||
| Assertion | rrgeq0i | |- ( ( X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | |- E = ( RLReg ` R ) |
|
| 2 | rrgval.b | |- B = ( Base ` R ) |
|
| 3 | rrgval.t | |- .x. = ( .r ` R ) |
|
| 4 | rrgval.z | |- .0. = ( 0g ` R ) |
|
| 5 | 1 2 3 4 | isrrg | |- ( X e. E <-> ( X e. B /\ A. y e. B ( ( X .x. y ) = .0. -> y = .0. ) ) ) |
| 6 | 5 | simprbi | |- ( X e. E -> A. y e. B ( ( X .x. y ) = .0. -> y = .0. ) ) |
| 7 | oveq2 | |- ( y = Y -> ( X .x. y ) = ( X .x. Y ) ) |
|
| 8 | 7 | eqeq1d | |- ( y = Y -> ( ( X .x. y ) = .0. <-> ( X .x. Y ) = .0. ) ) |
| 9 | eqeq1 | |- ( y = Y -> ( y = .0. <-> Y = .0. ) ) |
|
| 10 | 8 9 | imbi12d | |- ( y = Y -> ( ( ( X .x. y ) = .0. -> y = .0. ) <-> ( ( X .x. Y ) = .0. -> Y = .0. ) ) ) |
| 11 | 10 | rspcv | |- ( Y e. B -> ( A. y e. B ( ( X .x. y ) = .0. -> y = .0. ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) ) |
| 12 | 6 11 | mpan9 | |- ( ( X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) |