This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Z/nZ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zncrng.y | |- Y = ( Z/nZ ` N ) |
|
| Assertion | zncrng | |- ( N e. NN0 -> Y e. CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zncrng.y | |- Y = ( Z/nZ ` N ) |
|
| 2 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 3 | eqid | |- ( RSpan ` ZZring ) = ( RSpan ` ZZring ) |
|
| 4 | eqid | |- ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
|
| 5 | 3 4 | zncrng2 | |- ( N e. ZZ -> ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) e. CRing ) |
| 6 | 2 5 | syl | |- ( N e. NN0 -> ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) e. CRing ) |
| 7 | eqidd | |- ( N e. NN0 -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) |
|
| 8 | 3 4 1 | znbas2 | |- ( N e. NN0 -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( Base ` Y ) ) |
| 9 | 3 4 1 | znadd | |- ( N e. NN0 -> ( +g ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( +g ` Y ) ) |
| 10 | 9 | oveqdr | |- ( ( N e. NN0 /\ ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) /\ y e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) ) -> ( x ( +g ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) y ) = ( x ( +g ` Y ) y ) ) |
| 11 | 3 4 1 | znmul | |- ( N e. NN0 -> ( .r ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( .r ` Y ) ) |
| 12 | 11 | oveqdr | |- ( ( N e. NN0 /\ ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) /\ y e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) ) -> ( x ( .r ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) y ) = ( x ( .r ` Y ) y ) ) |
| 13 | 7 8 10 12 | crngpropd | |- ( N e. NN0 -> ( ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) e. CRing <-> Y e. CRing ) ) |
| 14 | 6 13 | mpbid | |- ( N e. NN0 -> Y e. CRing ) |