This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for the divides relation. Theorem 1.1(e) in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdscmulr | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. M ) || ( K x. N ) <-> M || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmulcl | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) |
|
| 2 | 1 | 3adant3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. M ) e. ZZ ) |
| 3 | zmulcl | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
|
| 4 | 3 | 3adant2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
| 5 | 2 4 | jca | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) ) |
| 6 | 5 | 3coml | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) ) |
| 7 | 6 | 3adant3r | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) ) |
| 8 | 3simpa | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 9 | simpr | |- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> x e. ZZ ) |
|
| 10 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 11 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 12 | 10 11 | anim12i | |- ( ( x e. ZZ /\ M e. ZZ ) -> ( x e. CC /\ M e. CC ) ) |
| 13 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 14 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 15 | 14 | anim1i | |- ( ( K e. ZZ /\ K =/= 0 ) -> ( K e. CC /\ K =/= 0 ) ) |
| 16 | mul12 | |- ( ( K e. CC /\ x e. CC /\ M e. CC ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) ) |
|
| 17 | 16 | 3adant1r | |- ( ( ( K e. CC /\ K =/= 0 ) /\ x e. CC /\ M e. CC ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) ) |
| 18 | 17 | 3expb | |- ( ( ( K e. CC /\ K =/= 0 ) /\ ( x e. CC /\ M e. CC ) ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) ) |
| 19 | 18 | ancoms | |- ( ( ( x e. CC /\ M e. CC ) /\ ( K e. CC /\ K =/= 0 ) ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) ) |
| 20 | 19 | 3adant2 | |- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) ) |
| 21 | 20 | eqeq1d | |- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. ( x x. M ) ) = ( K x. N ) <-> ( x x. ( K x. M ) ) = ( K x. N ) ) ) |
| 22 | mulcl | |- ( ( x e. CC /\ M e. CC ) -> ( x x. M ) e. CC ) |
|
| 23 | mulcan | |- ( ( ( x x. M ) e. CC /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. ( x x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
|
| 24 | 22 23 | syl3an1 | |- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. ( x x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
| 25 | 21 24 | bitr3d | |- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
| 26 | 12 13 15 25 | syl3an | |- ( ( ( x e. ZZ /\ M e. ZZ ) /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
| 27 | 26 | 3expb | |- ( ( ( x e. ZZ /\ M e. ZZ ) /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
| 28 | 27 | 3impa | |- ( ( x e. ZZ /\ M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
| 29 | 28 | 3coml | |- ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
| 30 | 29 | 3expia | |- ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( x e. ZZ -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) ) |
| 31 | 30 | 3impb | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( x e. ZZ -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) ) |
| 32 | 31 | imp | |- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
| 33 | 32 | biimpd | |- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) -> ( x x. M ) = N ) ) |
| 34 | 7 8 9 33 | dvds1lem | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. M ) || ( K x. N ) -> M || N ) ) |
| 35 | dvdscmul | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) ) |
|
| 36 | 35 | 3adant3r | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) ) |
| 37 | 34 36 | impbid | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. M ) || ( K x. N ) <-> M || N ) ) |