This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The units of Z/nZ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znchr.y | |- Y = ( Z/nZ ` N ) |
|
| znunit.u | |- U = ( Unit ` Y ) |
||
| znunit.l | |- L = ( ZRHom ` Y ) |
||
| Assertion | znunit | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) e. U <-> ( A gcd N ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znchr.y | |- Y = ( Z/nZ ` N ) |
|
| 2 | znunit.u | |- U = ( Unit ` Y ) |
|
| 3 | znunit.l | |- L = ( ZRHom ` Y ) |
|
| 4 | 1 | zncrng | |- ( N e. NN0 -> Y e. CRing ) |
| 5 | 4 | adantr | |- ( ( N e. NN0 /\ A e. ZZ ) -> Y e. CRing ) |
| 6 | eqid | |- ( 1r ` Y ) = ( 1r ` Y ) |
|
| 7 | eqid | |- ( ||r ` Y ) = ( ||r ` Y ) |
|
| 8 | 2 6 7 | crngunit | |- ( Y e. CRing -> ( ( L ` A ) e. U <-> ( L ` A ) ( ||r ` Y ) ( 1r ` Y ) ) ) |
| 9 | 5 8 | syl | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) e. U <-> ( L ` A ) ( ||r ` Y ) ( 1r ` Y ) ) ) |
| 10 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 11 | 1 10 3 | znzrhfo | |- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Y ) ) |
| 12 | 11 | adantr | |- ( ( N e. NN0 /\ A e. ZZ ) -> L : ZZ -onto-> ( Base ` Y ) ) |
| 13 | fof | |- ( L : ZZ -onto-> ( Base ` Y ) -> L : ZZ --> ( Base ` Y ) ) |
|
| 14 | 12 13 | syl | |- ( ( N e. NN0 /\ A e. ZZ ) -> L : ZZ --> ( Base ` Y ) ) |
| 15 | ffvelcdm | |- ( ( L : ZZ --> ( Base ` Y ) /\ A e. ZZ ) -> ( L ` A ) e. ( Base ` Y ) ) |
|
| 16 | 14 15 | sylancom | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( L ` A ) e. ( Base ` Y ) ) |
| 17 | eqid | |- ( .r ` Y ) = ( .r ` Y ) |
|
| 18 | 10 7 17 | dvdsr2 | |- ( ( L ` A ) e. ( Base ` Y ) -> ( ( L ` A ) ( ||r ` Y ) ( 1r ` Y ) <-> E. x e. ( Base ` Y ) ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 19 | 16 18 | syl | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) ( ||r ` Y ) ( 1r ` Y ) <-> E. x e. ( Base ` Y ) ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 20 | forn | |- ( L : ZZ -onto-> ( Base ` Y ) -> ran L = ( Base ` Y ) ) |
|
| 21 | 12 20 | syl | |- ( ( N e. NN0 /\ A e. ZZ ) -> ran L = ( Base ` Y ) ) |
| 22 | 21 | rexeqdv | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. x e. ran L ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> E. x e. ( Base ` Y ) ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 23 | ffn | |- ( L : ZZ --> ( Base ` Y ) -> L Fn ZZ ) |
|
| 24 | oveq1 | |- ( x = ( L ` n ) -> ( x ( .r ` Y ) ( L ` A ) ) = ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) ) |
|
| 25 | 24 | eqeq1d | |- ( x = ( L ` n ) -> ( ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 26 | 25 | rexrn | |- ( L Fn ZZ -> ( E. x e. ran L ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> E. n e. ZZ ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 27 | 14 23 26 | 3syl | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. x e. ran L ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> E. n e. ZZ ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 28 | 22 27 | bitr3d | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. x e. ( Base ` Y ) ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> E. n e. ZZ ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 29 | crngring | |- ( Y e. CRing -> Y e. Ring ) |
|
| 30 | 5 29 | syl | |- ( ( N e. NN0 /\ A e. ZZ ) -> Y e. Ring ) |
| 31 | 3 | zrhrhm | |- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
| 32 | 30 31 | syl | |- ( ( N e. NN0 /\ A e. ZZ ) -> L e. ( ZZring RingHom Y ) ) |
| 33 | 32 | adantr | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> L e. ( ZZring RingHom Y ) ) |
| 34 | simpr | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> n e. ZZ ) |
|
| 35 | simplr | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> A e. ZZ ) |
|
| 36 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 37 | zringmulr | |- x. = ( .r ` ZZring ) |
|
| 38 | 36 37 17 | rhmmul | |- ( ( L e. ( ZZring RingHom Y ) /\ n e. ZZ /\ A e. ZZ ) -> ( L ` ( n x. A ) ) = ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) ) |
| 39 | 33 34 35 38 | syl3anc | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( L ` ( n x. A ) ) = ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) ) |
| 40 | 30 | adantr | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> Y e. Ring ) |
| 41 | 3 6 | zrh1 | |- ( Y e. Ring -> ( L ` 1 ) = ( 1r ` Y ) ) |
| 42 | 40 41 | syl | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( L ` 1 ) = ( 1r ` Y ) ) |
| 43 | 39 42 | eqeq12d | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( ( L ` ( n x. A ) ) = ( L ` 1 ) <-> ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 44 | simpll | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> N e. NN0 ) |
|
| 45 | 34 35 | zmulcld | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( n x. A ) e. ZZ ) |
| 46 | 1zzd | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> 1 e. ZZ ) |
|
| 47 | 1 3 | zndvds | |- ( ( N e. NN0 /\ ( n x. A ) e. ZZ /\ 1 e. ZZ ) -> ( ( L ` ( n x. A ) ) = ( L ` 1 ) <-> N || ( ( n x. A ) - 1 ) ) ) |
| 48 | 44 45 46 47 | syl3anc | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( ( L ` ( n x. A ) ) = ( L ` 1 ) <-> N || ( ( n x. A ) - 1 ) ) ) |
| 49 | 43 48 | bitr3d | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> N || ( ( n x. A ) - 1 ) ) ) |
| 50 | 49 | rexbidva | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. n e. ZZ ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> E. n e. ZZ N || ( ( n x. A ) - 1 ) ) ) |
| 51 | simplr | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> A e. ZZ ) |
|
| 52 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 53 | 52 | ad2antrr | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> N e. ZZ ) |
| 54 | gcddvds | |- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( A gcd N ) || A /\ ( A gcd N ) || N ) ) |
|
| 55 | 51 53 54 | syl2anc | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( ( A gcd N ) || A /\ ( A gcd N ) || N ) ) |
| 56 | 55 | simpld | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) || A ) |
| 57 | 51 53 | gcdcld | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) e. NN0 ) |
| 58 | 57 | nn0zd | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) e. ZZ ) |
| 59 | 34 | adantrr | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> n e. ZZ ) |
| 60 | dvdsmultr2 | |- ( ( ( A gcd N ) e. ZZ /\ n e. ZZ /\ A e. ZZ ) -> ( ( A gcd N ) || A -> ( A gcd N ) || ( n x. A ) ) ) |
|
| 61 | 58 59 51 60 | syl3anc | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( ( A gcd N ) || A -> ( A gcd N ) || ( n x. A ) ) ) |
| 62 | 56 61 | mpd | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) || ( n x. A ) ) |
| 63 | 45 | adantrr | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( n x. A ) e. ZZ ) |
| 64 | 1zzd | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> 1 e. ZZ ) |
|
| 65 | peano2zm | |- ( ( n x. A ) e. ZZ -> ( ( n x. A ) - 1 ) e. ZZ ) |
|
| 66 | 63 65 | syl | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( ( n x. A ) - 1 ) e. ZZ ) |
| 67 | 55 | simprd | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) || N ) |
| 68 | simprr | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> N || ( ( n x. A ) - 1 ) ) |
|
| 69 | 58 53 66 67 68 | dvdstrd | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) || ( ( n x. A ) - 1 ) ) |
| 70 | dvdssub2 | |- ( ( ( ( A gcd N ) e. ZZ /\ ( n x. A ) e. ZZ /\ 1 e. ZZ ) /\ ( A gcd N ) || ( ( n x. A ) - 1 ) ) -> ( ( A gcd N ) || ( n x. A ) <-> ( A gcd N ) || 1 ) ) |
|
| 71 | 58 63 64 69 70 | syl31anc | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( ( A gcd N ) || ( n x. A ) <-> ( A gcd N ) || 1 ) ) |
| 72 | 62 71 | mpbid | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) || 1 ) |
| 73 | dvds1 | |- ( ( A gcd N ) e. NN0 -> ( ( A gcd N ) || 1 <-> ( A gcd N ) = 1 ) ) |
|
| 74 | 57 73 | syl | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( ( A gcd N ) || 1 <-> ( A gcd N ) = 1 ) ) |
| 75 | 72 74 | mpbid | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) = 1 ) |
| 76 | 75 | rexlimdvaa | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. n e. ZZ N || ( ( n x. A ) - 1 ) -> ( A gcd N ) = 1 ) ) |
| 77 | simpr | |- ( ( N e. NN0 /\ A e. ZZ ) -> A e. ZZ ) |
|
| 78 | 52 | adantr | |- ( ( N e. NN0 /\ A e. ZZ ) -> N e. ZZ ) |
| 79 | bezout | |- ( ( A e. ZZ /\ N e. ZZ ) -> E. n e. ZZ E. m e. ZZ ( A gcd N ) = ( ( A x. n ) + ( N x. m ) ) ) |
|
| 80 | 77 78 79 | syl2anc | |- ( ( N e. NN0 /\ A e. ZZ ) -> E. n e. ZZ E. m e. ZZ ( A gcd N ) = ( ( A x. n ) + ( N x. m ) ) ) |
| 81 | eqeq1 | |- ( ( A gcd N ) = 1 -> ( ( A gcd N ) = ( ( A x. n ) + ( N x. m ) ) <-> 1 = ( ( A x. n ) + ( N x. m ) ) ) ) |
|
| 82 | 81 | 2rexbidv | |- ( ( A gcd N ) = 1 -> ( E. n e. ZZ E. m e. ZZ ( A gcd N ) = ( ( A x. n ) + ( N x. m ) ) <-> E. n e. ZZ E. m e. ZZ 1 = ( ( A x. n ) + ( N x. m ) ) ) ) |
| 83 | 80 82 | syl5ibcom | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( A gcd N ) = 1 -> E. n e. ZZ E. m e. ZZ 1 = ( ( A x. n ) + ( N x. m ) ) ) ) |
| 84 | 52 | ad3antrrr | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> N e. ZZ ) |
| 85 | dvdsmul1 | |- ( ( N e. ZZ /\ m e. ZZ ) -> N || ( N x. m ) ) |
|
| 86 | 84 85 | sylancom | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> N || ( N x. m ) ) |
| 87 | zmulcl | |- ( ( N e. ZZ /\ m e. ZZ ) -> ( N x. m ) e. ZZ ) |
|
| 88 | 84 87 | sylancom | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( N x. m ) e. ZZ ) |
| 89 | dvdsnegb | |- ( ( N e. ZZ /\ ( N x. m ) e. ZZ ) -> ( N || ( N x. m ) <-> N || -u ( N x. m ) ) ) |
|
| 90 | 84 88 89 | syl2anc | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( N || ( N x. m ) <-> N || -u ( N x. m ) ) ) |
| 91 | 86 90 | mpbid | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> N || -u ( N x. m ) ) |
| 92 | 35 | adantr | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> A e. ZZ ) |
| 93 | 92 | zcnd | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> A e. CC ) |
| 94 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 95 | 94 | ad2antlr | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> n e. CC ) |
| 96 | 93 95 | mulcomd | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( A x. n ) = ( n x. A ) ) |
| 97 | 96 | oveq1d | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( A x. n ) + ( N x. m ) ) = ( ( n x. A ) + ( N x. m ) ) ) |
| 98 | 95 93 | mulcld | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( n x. A ) e. CC ) |
| 99 | 88 | zcnd | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( N x. m ) e. CC ) |
| 100 | 98 99 | subnegd | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( n x. A ) - -u ( N x. m ) ) = ( ( n x. A ) + ( N x. m ) ) ) |
| 101 | 97 100 | eqtr4d | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( A x. n ) + ( N x. m ) ) = ( ( n x. A ) - -u ( N x. m ) ) ) |
| 102 | 101 | oveq2d | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( n x. A ) - ( ( A x. n ) + ( N x. m ) ) ) = ( ( n x. A ) - ( ( n x. A ) - -u ( N x. m ) ) ) ) |
| 103 | 99 | negcld | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> -u ( N x. m ) e. CC ) |
| 104 | 98 103 | nncand | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( n x. A ) - ( ( n x. A ) - -u ( N x. m ) ) ) = -u ( N x. m ) ) |
| 105 | 102 104 | eqtrd | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( n x. A ) - ( ( A x. n ) + ( N x. m ) ) ) = -u ( N x. m ) ) |
| 106 | 91 105 | breqtrrd | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> N || ( ( n x. A ) - ( ( A x. n ) + ( N x. m ) ) ) ) |
| 107 | oveq2 | |- ( 1 = ( ( A x. n ) + ( N x. m ) ) -> ( ( n x. A ) - 1 ) = ( ( n x. A ) - ( ( A x. n ) + ( N x. m ) ) ) ) |
|
| 108 | 107 | breq2d | |- ( 1 = ( ( A x. n ) + ( N x. m ) ) -> ( N || ( ( n x. A ) - 1 ) <-> N || ( ( n x. A ) - ( ( A x. n ) + ( N x. m ) ) ) ) ) |
| 109 | 106 108 | syl5ibrcom | |- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( 1 = ( ( A x. n ) + ( N x. m ) ) -> N || ( ( n x. A ) - 1 ) ) ) |
| 110 | 109 | rexlimdva | |- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( E. m e. ZZ 1 = ( ( A x. n ) + ( N x. m ) ) -> N || ( ( n x. A ) - 1 ) ) ) |
| 111 | 110 | reximdva | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. n e. ZZ E. m e. ZZ 1 = ( ( A x. n ) + ( N x. m ) ) -> E. n e. ZZ N || ( ( n x. A ) - 1 ) ) ) |
| 112 | 83 111 | syld | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( A gcd N ) = 1 -> E. n e. ZZ N || ( ( n x. A ) - 1 ) ) ) |
| 113 | 76 112 | impbid | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. n e. ZZ N || ( ( n x. A ) - 1 ) <-> ( A gcd N ) = 1 ) ) |
| 114 | 28 50 113 | 3bitrd | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. x e. ( Base ` Y ) ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> ( A gcd N ) = 1 ) ) |
| 115 | 9 19 114 | 3bitrd | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) e. U <-> ( A gcd N ) = 1 ) ) |