This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioorebas | |- ( A (,) B ) e. ran (,) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( ( A (,) B ) = (/) -> ( A (,) B ) = (/) ) |
|
| 2 | iooid | |- ( 0 (,) 0 ) = (/) |
|
| 3 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 4 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 5 | 3 4 | ax-mp | |- (,) Fn ( RR* X. RR* ) |
| 6 | 0xr | |- 0 e. RR* |
|
| 7 | fnovrn | |- ( ( (,) Fn ( RR* X. RR* ) /\ 0 e. RR* /\ 0 e. RR* ) -> ( 0 (,) 0 ) e. ran (,) ) |
|
| 8 | 5 6 6 7 | mp3an | |- ( 0 (,) 0 ) e. ran (,) |
| 9 | 2 8 | eqeltrri | |- (/) e. ran (,) |
| 10 | 1 9 | eqeltrdi | |- ( ( A (,) B ) = (/) -> ( A (,) B ) e. ran (,) ) |
| 11 | n0 | |- ( ( A (,) B ) =/= (/) <-> E. x x e. ( A (,) B ) ) |
|
| 12 | eliooxr | |- ( x e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* ) ) |
|
| 13 | fnovrn | |- ( ( (,) Fn ( RR* X. RR* ) /\ A e. RR* /\ B e. RR* ) -> ( A (,) B ) e. ran (,) ) |
|
| 14 | 5 13 | mp3an1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) e. ran (,) ) |
| 15 | 12 14 | syl | |- ( x e. ( A (,) B ) -> ( A (,) B ) e. ran (,) ) |
| 16 | 15 | exlimiv | |- ( E. x x e. ( A (,) B ) -> ( A (,) B ) e. ran (,) ) |
| 17 | 11 16 | sylbi | |- ( ( A (,) B ) =/= (/) -> ( A (,) B ) e. ran (,) ) |
| 18 | 10 17 | pm2.61ine | |- ( A (,) B ) e. ran (,) |