This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show A e. RR* and B e. RR* . (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| Assertion | elixx3g | |- ( C e. ( A O B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A R C /\ C S B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | anass | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( A R C /\ C S B ) ) <-> ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ ( A R C /\ C S B ) ) ) ) |
|
| 3 | df-3an | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) <-> ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) ) |
|
| 4 | 3 | anbi1i | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A R C /\ C S B ) ) <-> ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) /\ ( A R C /\ C S B ) ) ) |
| 5 | 1 | elixx1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A O B ) <-> ( C e. RR* /\ A R C /\ C S B ) ) ) |
| 6 | 3anass | |- ( ( C e. RR* /\ A R C /\ C S B ) <-> ( C e. RR* /\ ( A R C /\ C S B ) ) ) |
|
| 7 | ibar | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( C e. RR* /\ ( A R C /\ C S B ) ) <-> ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ ( A R C /\ C S B ) ) ) ) ) |
|
| 8 | 6 7 | bitrid | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( C e. RR* /\ A R C /\ C S B ) <-> ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ ( A R C /\ C S B ) ) ) ) ) |
| 9 | 5 8 | bitrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A O B ) <-> ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ ( A R C /\ C S B ) ) ) ) ) |
| 10 | 1 | ixxf | |- O : ( RR* X. RR* ) --> ~P RR* |
| 11 | 10 | fdmi | |- dom O = ( RR* X. RR* ) |
| 12 | 11 | ndmov | |- ( -. ( A e. RR* /\ B e. RR* ) -> ( A O B ) = (/) ) |
| 13 | 12 | eleq2d | |- ( -. ( A e. RR* /\ B e. RR* ) -> ( C e. ( A O B ) <-> C e. (/) ) ) |
| 14 | noel | |- -. C e. (/) |
|
| 15 | 14 | pm2.21i | |- ( C e. (/) -> ( A e. RR* /\ B e. RR* ) ) |
| 16 | simpl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ ( A R C /\ C S B ) ) ) -> ( A e. RR* /\ B e. RR* ) ) |
|
| 17 | 15 16 | pm5.21ni | |- ( -. ( A e. RR* /\ B e. RR* ) -> ( C e. (/) <-> ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ ( A R C /\ C S B ) ) ) ) ) |
| 18 | 13 17 | bitrd | |- ( -. ( A e. RR* /\ B e. RR* ) -> ( C e. ( A O B ) <-> ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ ( A R C /\ C S B ) ) ) ) ) |
| 19 | 9 18 | pm2.61i | |- ( C e. ( A O B ) <-> ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ ( A R C /\ C S B ) ) ) ) |
| 20 | 2 4 19 | 3bitr4ri | |- ( C e. ( A O B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A R C /\ C S B ) ) ) |