This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltpnf | |- ( A e. RR -> A < +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- +oo = +oo |
|
| 2 | orc | |- ( ( A e. RR /\ +oo = +oo ) -> ( ( A e. RR /\ +oo = +oo ) \/ ( A = -oo /\ +oo e. RR ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR -> ( ( A e. RR /\ +oo = +oo ) \/ ( A = -oo /\ +oo e. RR ) ) ) |
| 4 | 3 | olcd | |- ( A e. RR -> ( ( ( ( A e. RR /\ +oo e. RR ) /\ A |
| 5 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 6 | pnfxr | |- +oo e. RR* |
|
| 7 | ltxr | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( A < +oo <-> ( ( ( ( A e. RR /\ +oo e. RR ) /\ A |
|
| 8 | 5 6 7 | sylancl | |- ( A e. RR -> ( A < +oo <-> ( ( ( ( A e. RR /\ +oo e. RR ) /\ A |
| 9 | 4 8 | mpbird | |- ( A e. RR -> A < +oo ) |