This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrrest.1 | |- X = ( ordTop ` <_ ) |
|
| xrrest.2 | |- R = ( topGen ` ran (,) ) |
||
| Assertion | xrrest | |- ( A C_ RR -> ( X |`t A ) = ( R |`t A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrrest.1 | |- X = ( ordTop ` <_ ) |
|
| 2 | xrrest.2 | |- R = ( topGen ` ran (,) ) |
|
| 3 | 1 | oveq1i | |- ( X |`t RR ) = ( ( ordTop ` <_ ) |`t RR ) |
| 4 | 3 | xrtgioo | |- ( topGen ` ran (,) ) = ( X |`t RR ) |
| 5 | 2 4 | eqtri | |- R = ( X |`t RR ) |
| 6 | 5 | oveq1i | |- ( R |`t A ) = ( ( X |`t RR ) |`t A ) |
| 7 | 1 | fvexi | |- X e. _V |
| 8 | reex | |- RR e. _V |
|
| 9 | restabs | |- ( ( X e. _V /\ A C_ RR /\ RR e. _V ) -> ( ( X |`t RR ) |`t A ) = ( X |`t A ) ) |
|
| 10 | 7 8 9 | mp3an13 | |- ( A C_ RR -> ( ( X |`t RR ) |`t A ) = ( X |`t A ) ) |
| 11 | 6 10 | eqtr2id | |- ( A C_ RR -> ( X |`t A ) = ( R |`t A ) ) |