This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgss | |- ( ( C e. V /\ B C_ C ) -> ( topGen ` B ) C_ ( topGen ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin | |- ( B C_ C -> ( B i^i ~P x ) C_ ( C i^i ~P x ) ) |
|
| 2 | 1 | unissd | |- ( B C_ C -> U. ( B i^i ~P x ) C_ U. ( C i^i ~P x ) ) |
| 3 | sstr2 | |- ( x C_ U. ( B i^i ~P x ) -> ( U. ( B i^i ~P x ) C_ U. ( C i^i ~P x ) -> x C_ U. ( C i^i ~P x ) ) ) |
|
| 4 | 2 3 | syl5com | |- ( B C_ C -> ( x C_ U. ( B i^i ~P x ) -> x C_ U. ( C i^i ~P x ) ) ) |
| 5 | 4 | adantl | |- ( ( C e. V /\ B C_ C ) -> ( x C_ U. ( B i^i ~P x ) -> x C_ U. ( C i^i ~P x ) ) ) |
| 6 | ssexg | |- ( ( B C_ C /\ C e. V ) -> B e. _V ) |
|
| 7 | 6 | ancoms | |- ( ( C e. V /\ B C_ C ) -> B e. _V ) |
| 8 | eltg | |- ( B e. _V -> ( x e. ( topGen ` B ) <-> x C_ U. ( B i^i ~P x ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( C e. V /\ B C_ C ) -> ( x e. ( topGen ` B ) <-> x C_ U. ( B i^i ~P x ) ) ) |
| 10 | eltg | |- ( C e. V -> ( x e. ( topGen ` C ) <-> x C_ U. ( C i^i ~P x ) ) ) |
|
| 11 | 10 | adantr | |- ( ( C e. V /\ B C_ C ) -> ( x e. ( topGen ` C ) <-> x C_ U. ( C i^i ~P x ) ) ) |
| 12 | 5 9 11 | 3imtr4d | |- ( ( C e. V /\ B C_ C ) -> ( x e. ( topGen ` B ) -> x e. ( topGen ` C ) ) ) |
| 13 | 12 | ssrdv | |- ( ( C e. V /\ B C_ C ) -> ( topGen ` B ) C_ ( topGen ` C ) ) |