This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgtop | |- ( J e. Top -> ( topGen ` J ) = J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltg3 | |- ( J e. Top -> ( x e. ( topGen ` J ) <-> E. y ( y C_ J /\ x = U. y ) ) ) |
|
| 2 | simpr | |- ( ( ( J e. Top /\ y C_ J ) /\ x = U. y ) -> x = U. y ) |
|
| 3 | uniopn | |- ( ( J e. Top /\ y C_ J ) -> U. y e. J ) |
|
| 4 | 3 | adantr | |- ( ( ( J e. Top /\ y C_ J ) /\ x = U. y ) -> U. y e. J ) |
| 5 | 2 4 | eqeltrd | |- ( ( ( J e. Top /\ y C_ J ) /\ x = U. y ) -> x e. J ) |
| 6 | 5 | expl | |- ( J e. Top -> ( ( y C_ J /\ x = U. y ) -> x e. J ) ) |
| 7 | 6 | exlimdv | |- ( J e. Top -> ( E. y ( y C_ J /\ x = U. y ) -> x e. J ) ) |
| 8 | 1 7 | sylbid | |- ( J e. Top -> ( x e. ( topGen ` J ) -> x e. J ) ) |
| 9 | 8 | ssrdv | |- ( J e. Top -> ( topGen ` J ) C_ J ) |
| 10 | bastg | |- ( J e. Top -> J C_ ( topGen ` J ) ) |
|
| 11 | 9 10 | eqssd | |- ( J e. Top -> ( topGen ` J ) = J ) |