This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a nullset is null. (Contributed by Mario Carneiro, 19-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolssnul | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolss | |- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
| 3 | simp3 | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` B ) = 0 ) |
|
| 4 | 2 3 | breqtrd | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) <_ 0 ) |
| 5 | sstr | |- ( ( A C_ B /\ B C_ RR ) -> A C_ RR ) |
|
| 6 | 5 | 3adant3 | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> A C_ RR ) |
| 7 | ovolge0 | |- ( A C_ RR -> 0 <_ ( vol* ` A ) ) |
|
| 8 | 6 7 | syl | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> 0 <_ ( vol* ` A ) ) |
| 9 | ovolcl | |- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
|
| 10 | 6 9 | syl | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) e. RR* ) |
| 11 | 0xr | |- 0 e. RR* |
|
| 12 | xrletri3 | |- ( ( ( vol* ` A ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) |
|
| 13 | 10 11 12 | sylancl | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) |
| 14 | 4 8 13 | mpbir2and | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) = 0 ) |