This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | |- ( ph -> A e. RR ) |
|
| ivth.2 | |- ( ph -> B e. RR ) |
||
| ivth.3 | |- ( ph -> U e. RR ) |
||
| ivth.4 | |- ( ph -> A < B ) |
||
| ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
||
| ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
||
| ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
||
| ivthle.9 | |- ( ph -> ( ( F ` A ) <_ U /\ U <_ ( F ` B ) ) ) |
||
| Assertion | ivthle | |- ( ph -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | |- ( ph -> A e. RR ) |
|
| 2 | ivth.2 | |- ( ph -> B e. RR ) |
|
| 3 | ivth.3 | |- ( ph -> U e. RR ) |
|
| 4 | ivth.4 | |- ( ph -> A < B ) |
|
| 5 | ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
|
| 6 | ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
|
| 7 | ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
|
| 8 | ivthle.9 | |- ( ph -> ( ( F ` A ) <_ U /\ U <_ ( F ` B ) ) ) |
|
| 9 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 10 | 1 | adantr | |- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> A e. RR ) |
| 11 | 2 | adantr | |- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> B e. RR ) |
| 12 | 3 | adantr | |- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> U e. RR ) |
| 13 | 4 | adantr | |- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> A < B ) |
| 14 | 5 | adantr | |- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> ( A [,] B ) C_ D ) |
| 15 | 6 | adantr | |- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> F e. ( D -cn-> CC ) ) |
| 16 | 7 | adantlr | |- ( ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
| 17 | simpr | |- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
|
| 18 | 10 11 12 13 14 15 16 17 | ivth | |- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> E. c e. ( A (,) B ) ( F ` c ) = U ) |
| 19 | ssrexv | |- ( ( A (,) B ) C_ ( A [,] B ) -> ( E. c e. ( A (,) B ) ( F ` c ) = U -> E. c e. ( A [,] B ) ( F ` c ) = U ) ) |
|
| 20 | 9 18 19 | mpsyl | |- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 21 | 20 | anassrs | |- ( ( ( ph /\ ( F ` A ) < U ) /\ U < ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 22 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 23 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 24 | 1 2 4 | ltled | |- ( ph -> A <_ B ) |
| 25 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 26 | 22 23 24 25 | syl3anc | |- ( ph -> B e. ( A [,] B ) ) |
| 27 | eqcom | |- ( ( F ` c ) = U <-> U = ( F ` c ) ) |
|
| 28 | fveq2 | |- ( c = B -> ( F ` c ) = ( F ` B ) ) |
|
| 29 | 28 | eqeq2d | |- ( c = B -> ( U = ( F ` c ) <-> U = ( F ` B ) ) ) |
| 30 | 27 29 | bitrid | |- ( c = B -> ( ( F ` c ) = U <-> U = ( F ` B ) ) ) |
| 31 | 30 | rspcev | |- ( ( B e. ( A [,] B ) /\ U = ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 32 | 26 31 | sylan | |- ( ( ph /\ U = ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 33 | 32 | adantlr | |- ( ( ( ph /\ ( F ` A ) < U ) /\ U = ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 34 | 8 | simprd | |- ( ph -> U <_ ( F ` B ) ) |
| 35 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 36 | 35 | eleq1d | |- ( x = B -> ( ( F ` x ) e. RR <-> ( F ` B ) e. RR ) ) |
| 37 | 7 | ralrimiva | |- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 38 | 36 37 26 | rspcdva | |- ( ph -> ( F ` B ) e. RR ) |
| 39 | 3 38 | leloed | |- ( ph -> ( U <_ ( F ` B ) <-> ( U < ( F ` B ) \/ U = ( F ` B ) ) ) ) |
| 40 | 34 39 | mpbid | |- ( ph -> ( U < ( F ` B ) \/ U = ( F ` B ) ) ) |
| 41 | 40 | adantr | |- ( ( ph /\ ( F ` A ) < U ) -> ( U < ( F ` B ) \/ U = ( F ` B ) ) ) |
| 42 | 21 33 41 | mpjaodan | |- ( ( ph /\ ( F ` A ) < U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 43 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 44 | 22 23 24 43 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 45 | fveqeq2 | |- ( c = A -> ( ( F ` c ) = U <-> ( F ` A ) = U ) ) |
|
| 46 | 45 | rspcev | |- ( ( A e. ( A [,] B ) /\ ( F ` A ) = U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 47 | 44 46 | sylan | |- ( ( ph /\ ( F ` A ) = U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 48 | 8 | simpld | |- ( ph -> ( F ` A ) <_ U ) |
| 49 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 50 | 49 | eleq1d | |- ( x = A -> ( ( F ` x ) e. RR <-> ( F ` A ) e. RR ) ) |
| 51 | 50 37 44 | rspcdva | |- ( ph -> ( F ` A ) e. RR ) |
| 52 | 51 3 | leloed | |- ( ph -> ( ( F ` A ) <_ U <-> ( ( F ` A ) < U \/ ( F ` A ) = U ) ) ) |
| 53 | 48 52 | mpbid | |- ( ph -> ( ( F ` A ) < U \/ ( F ` A ) = U ) ) |
| 54 | 42 47 53 | mpjaodan | |- ( ph -> E. c e. ( A [,] B ) ( F ` c ) = U ) |